DOI QR코드

DOI QR Code

Understanding Interfacial Charge Transfer Nonlinearly Boosted by Localized States Coupling in Organic Transistors

유기트랜지스터 내부 편재화 준위간 커플링에 의한 계면 전하이동의 비선형적 가속화 현상의 이해

  • Han, Songyeon (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Kim, Soojin (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Choi, Hyun Ho (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
  • 한송연 (경상국립대학교 나노신소재융합공학과) ;
  • 김수진 (경상국립대학교 나노신소재융합공학과) ;
  • 최현호 (경상국립대학교 나노신소재융합공학과)
  • Received : 2021.12.04
  • Accepted : 2021.12.13
  • Published : 2021.12.31

Abstract

Understanding charge transfer across the interface between organic semiconductor and gate insulator gives insight into the development of high-performance organic memory as well as highly stable organic field-effect transistors (OFETs). In this work, we firstly unveil a novel interfacial charge transfer mechanism, in which hole transfer from organic semiconductor to polymer insulator was nonlinearly boosted by localized states coupling. For this, OFETs based on rubrene single crystal semiconductor and Mylar gate insulator were fabricated via vacuum lamination, which allows stable repetition of lamination and delamination between semiconductor and gate insulator. The surfaces of rubrene single crystal and Mylar film were selectively degraded by photo-induced oxygen diffusion and UV-ozone treatment, respectively. Consequently, we found that the interfacial charge transfer and resultant bias-stress effect were nonlinearly boosted by coupling between localized states in rubrene and Mylar. In particular, the small number of localized states in rubrene single crystal provided fluent pathway for interfacial charge transport.

유기반도체와 게이트 절연체 간 계면전하이동을 이해하는 것은 고성능 유기메모리, 고안정성 유기전계효과 트랜지스터 (이하 유기트랜지스터) 개발에 기여할 수 있다. 본 연구에서는 계면 간 전하이동의 특이거동, 즉 홀전하가 유기반도체에서 고분자절연체로 이동되어 편재화되는 것이 편재화 준위간의 커플링에 의해 비선형적으로 가속화될 수 있음을 최초로 밝혀내었다. 이의 규명을 위해 rubrene 단결정과 Mylar 절연체를 기반으로 한 유기트랜지스터를 vacuum lamination 공정으로 제작하여 반도체-절연체 계면의 반복적인 전사와 박리에도 안정적인 소자를 개발하였다. Rubrene 단결정과 Mylar film의 표면을 각각 광유도 산소 확산법과 UV-오존 처리를 통해 결함을 생성시켰다. 그 결과, 계면 간 전하이동과 이에 의한 바이어스 스트레스 효과가 rubrene과 Mylar가 가진 편재화 준위 간 커플링에 의해 비선형적으로 급격하게 가속화되었음을 관측하였다. 특히, rubrene 단결정에 있는 적은 밀도의 편재화 준위가 계면 간 전하이동을 촉진하는데 가교역할을 함을 밝혀내었다

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020R1C1C1012690, 2020R1A6A03038697).

References

  1. H. H. Choi, H. T. Yi, J. Tsurumi, J. J. Kim, A. L. Briseno, S. Watanabe, J. Takeya, K. Cho, V. Podzorov, Advanced Science, 7, 1901824 (2020). https://doi.org/10.1002/advs.201901824
  2. Y. H. Lee, M. Jang, M. Y. Lee, O. Y. Kweon, J. H. Oh, Chem, 3, 724 (2017). https://doi.org/10.1016/j.chempr.2017.10.005
  3. L. M. Nhari, R. M. El-Shishtawy, A. M. Asiri, Dyes and Pigments, 193, 109465 (2021). https://doi.org/10.1016/j.dyepig.2021.109465
  4. J. Liu, Z. Qin, H. Gao, H. Dong, J. Zhu, W. Hu, Advanced Functional Materials, 29, 1808453 (2019). https://doi.org/10.1002/adfm.201808453
  5. H. H. Choi, Y. I. Rodionov, A. F. Paterson, J. Panidi, D. Saranin, N. Kharlamov, S. I. Didenko, T. D. Anthopoulos, K. Cho, V. Podzorov, Advanced Functional Materials, 28, 1707105 (2018). https://doi.org/10.1002/adfm.201707105
  6. C. Wang, X. Zhang, H. Dong, X. Chen, W. Hu, Advanced Energy Materials, 10, 2000955 (2020). https://doi.org/10.1002/aenm.202000955
  7. H. Sirringhaus, Advanced Materials, 21, 3859 (2009). https://doi.org/10.1002/adma.200901136
  8. J. S. Park, W.-J. Maeng, H.-S. Kim, J.-S. Park, Thin Solid Films, 520, 1679 (2012). https://doi.org/10.1016/j.tsf.2011.07.018
  9. S. Park, S. H. Kim, H. H. Choi, B. Kang, K. Cho, Advanced Functional Materials, 30, 1904590 (2020). https://doi.org/10.1002/adfm.201904590
  10. Y. Chen, V. Podzorov, Advanced Materials, 24, 2679 (2012). https://doi.org/10.1002/adma.201200455
  11. H. H. Choi, W. H. Lee, K. Cho, Advanced Functional Materials, 22, 4833 (2012). https://doi.org/10.1002/adfm.201201084
  12. S. G. Lee, H. H. Choi, Journal of Adhesion and Interface Korea, 20, 162 (2019).
  13. R. A. Street, A. Salleo, M. L. Chabinyc, Physical Review B, 68, 085316 (2003). https://doi.org/10.1103/physrevb.68.085316
  14. A. Salleo, R. A. Street, Physical Review B, 70, 235324 (2004). https://doi.org/10.1103/physrevb.70.235324
  15. A. Y. B. Meneau, Y. Olivier, T. Backlund, M. James, D. W. Breiby, J. W. Andreasen, H. Sirringhaus, Advanced Functional Materials, 26, 2326 (2016). https://doi.org/10.1002/adfm.201502502
  16. B. Kang, B. Moon, H. H. Choi, E. Song, K. Cho, Advanced Electronic Materials, 2, 1500380 (2016). https://doi.org/10.1002/aelm.201500380
  17. T. Miyadera, S. D. Wang, T. Minari, K. Tsukagoshi, Y. Aoyagi, Applied Physics Letters, 93, 033304 (2008). https://doi.org/10.1063/1.2949746
  18. S. G. Mathijssen, M. J. Spijkman, A. M. Andringa, P. A. van Hal, I. McCulloch, M. Kemerink, R. A. Janssen, D. M. de Leeuw, Advanced Materials, 22, 5105 (2010). https://doi.org/10.1002/adma.201001865
  19. H. H. Choi, H. Najafov, N. Kharlamov, D. V. Kuznetsov, S. I. Didenko, K. Cho, A. L. Briseno, V. Podzorov, ACS Applied Materials & Interfaces, 9, 34153 (2017). https://doi.org/10.1021/acsami.7b11134
  20. V. Podzorov, M. E. Gershenson, Physical Review Letters, 95, 016602 (2005). https://doi.org/10.1103/PhysRevLett.95.016602
  21. V. Y. Butko, X. Chi, D. V. Lang, A. P. Ramirez, Applied Physics Letters, 83, 4773 (2003). https://doi.org/10.1063/1.1631736
  22. H. T. Yi, Y. Chen, K. Czelen, V. Podzorov, Advanced Materials, 23, 5807 (2011). https://doi.org/10.1002/adma.201103305
  23. R. A. Laudise, C. Kloc, P. G. Simpkins, T. Siegrist, Journal of Crystal Growth, 187, 449 (1998). https://doi.org/10.1016/S0022-0248(98)00034-7
  24. A. R. Ullah, A. P. Micolich, J. W. Cochrane, A. R. Hamilton, in Proc. SPIE (2008).
  25. Y. Lee, K. L. Kim, H. S. Kang, B. Jeong, C. Park, I. Bae, S. J. Kang, Y. J. Park, C. Park, Small, 14, 1704024 (2018). https://doi.org/10.1002/smll.201704024
  26. Y. Chen, B. Lee, D. Fu, V. Podzorov, Advanced Materials, 23, 5370 (2011). https://doi.org/10.1002/adma.201102294
  27. H. Najafov, D. Mastrogiovanni, E. Garfunkel, L. C. Feldman, V. Podzorov, Advanced Materials, 23, 981 (2011). https://doi.org/10.1002/adma.201004239
  28. J. Lee, H. Cho, H. C. Choi, ACS Applied Electronic Materials, 1, 2174 (2019). https://doi.org/10.1021/acsaelm.9b00538
  29. Z. Liu, M. Kobayashi, B. C. Paul, Z. Bao, Y. Nishi, in 2009 IEEE International Electron Devices Meeting (IEDM), 1, (2009)
  30. P. Irkhin, H. Najafov, V. Podzorov, Scientific Reports, 5, 15323 (2015). https://doi.org/10.1038/srep15323
  31. H. Najafov, B. Lyu, I. Biaggio, V. Podzorov, Applied Physics Letters, 96, (2010).
  32. H. Najafov, I. Biaggio, V. Podzorov, M. F. Calhoun, M. E. Gershenson, Physical Review Letters, 96, 056604 (2006). https://doi.org/10.1103/PhysRevLett.96.056604
  33. H. Najafov, B. Lyu, I. Biaggio, V. Podzorov, Physical Review B, 77, (2008).
  34. H. H. Choi, K. Cho, C. D. Frisbie, H. Sirringhaus, V. Podzorov, Nature Materials, 17, 2 (2018). https://doi.org/10.1038/nmat5035
  35. C. Ton-That, D. O. H. Teare, P. A. Campbell, R. H. Bradley, Surface Science, 278, 433 (1999).
  36. C. Ton-That, P. A. Campbell, R. H. Bradley, Langmuir, 16, 5054 (2000). https://doi.org/10.1021/la9908586
  37. V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J. A. Rogers, M. E. Gershenson, Physical Review Letters, 93, 086602 (2004). https://doi.org/10.1103/PhysRevLett.93.086602
  38. F. Gholamrezaie, A.-M. Andringa, W. S. C. Roelofs, A. Neuhold, M. Kemerink, P. W. M. Blom, D. M. de Leeuw, Small, 8, 241 (2012). https://doi.org/10.1002/smll.201101467
  39. H. H. Choi, M. S. Kang, M. Kim, H. Kim, J. H. Cho, K. Cho, Advanced Functional Materials, 23, 690 (2013). https://doi.org/10.1002/adfm.201201545
  40. S. G. J. Mathijssen, M. Colle, H. Gomes, E. C. P. Smits, B. de Boer, I. McCulloch, P. A. Bobbert, D. M. de Leeuw, Advanced Materials, 19, 2785 (2007). https://doi.org/10.1002/adma.200602798