DOI QR코드

DOI QR Code

Dual-phase-lag model on thermo-microstretch elastic solid Under the effect of initial stress and temperature-dependent

  • Othman, Mohamed I.A. (Department of Mathematics, Faculty of Science, Zagazig University) ;
  • Zidan, Magda E.M. (Department of Mathematics, Faculty of Science, Zagazig University) ;
  • Mohamed, Ibrahim E.A. (Department of Mathematics, Faculty of Science, Zagazig University)
  • 투고 : 2020.08.24
  • 심사 : 2021.02.02
  • 발행 : 2021.02.25

초록

The present paper attempts to investigate the propagation of plane waves in an isotropic elastic medium under the effect of initial stress and temperature-dependent properties. The modulus of elasticity is taken as a linear function of the reference temperature. The formulation is applied under the thermoelasticity theory with dual-phase-lag; the normal mode analysis is used to obtain the expressions for the displacement components, the temperature, the stress, and the strain components. Numerical results for the field quantities are given in the physical domain and illustrated graphically. Comparisons are made with the results predicted by different theories (Lord-Shulman theory, the classical coupled theory of thermoelasticity and the dual-phase-lag model) in the absence and presence of the initial stress as well as the case where the modulus of elasticity is independent of temperature.

키워드

참고문헌

  1. Abbas, I.A. and Marin, M. (2017), "Analytical solution of ther moelastic interaction in a half-space by pulsed laser heating", Physica E-Low-Dimensional Systems & Nanostruct., 87, 254-260. DOI:10.1016/j.physe.2016.10.048.
  2. Abd-Elaziz, E.M., Marin, M. and Othman, M.I.A. (2019), "On the effect of Thomson and initial stress in a thermo-porous elasticsolid under G-N electromagnetic theory", Symmetry, in Appl. Cont. Mech., 11(3), 413-430. doi:10.3390/sym11030413.
  3. Arefi, M. (2016a), "Analysis of wave in a functionally graded magneto-electro-elastic nano-rod using nonlocal elasticitymodel subjected to electric and magnetic potentials", Acta Mech., 227(9), 2529-2542. https://doi.org/10.1007/s00707-016-1584-7.
  4. Arefi, M. (2016b), "Surface effect and non-local elasticity in wave propagation of functionally graded piezoelectric nano-rod excited to applied voltage", Appl. Math. Mech., 37(3), 289-302. https://doi.org/10.1007/s10483-016-2039-6.
  5. Arefi, M. and Zenkour, A.M. (2016), "Free vibration, wavepropagation and tension analyses of a sandwich micro/nano rod subjected to electric potential using strain gradient theory", Mat. Res. Exp., 3(11), 115704. https://doi.org/10.1088/2053-1591/3/11/115704
  6. Arefi, M., Faegh, R.K. and Loghman, A. (2016), "The effect of axially variable thermal and mechanical loads on the 2D thermo- elastic response of FG cylindrical shell", J. Therm. Stress., 39(12), 1539-1559. https://doi.org/10.1080/01495739.2016.1217178.
  7. Arefi, M. and Zenkour, A.M. (2017a), "Wave propagation analysis of a functionally graded magneto-electro-elastic nano-beam rest on Visco-Pasternak foundation", Mech. Res. Commun., 79, 51-62. https://doi.org/10.1016/j.mechrescom.2017.01.004.
  8. Arefi, M. and Zenkour, A.M. (2017b), "Employing the coupled stress components and surface elasticity for nonlocal solution of wave propagation of a functionally graded piezoelectric Love nanorod model", J. Intel. Mater. Syst. Str., 28(17), 2403-2413. https://doi.org/10.1177/1045389X17689930.
  9. Arefi, M. and Zenkour, A.M. (2019), "Influence of micro-length-scale parameters and inhomogeneities on the bending, free vibration and wave propagation analyses of a FG Timoshenko's sandwich piezoelectric microbeam", J. Sandw. Struct. Mater., 21(4), 1243-1270. https://doi.org/10.1177/1099636217714181.
  10. Biot, M.A. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27, 240-253. https://doi.org/10.1063/1.1722351.
  11. Bromwich, T.J. (1898), "On the influence of gravity on elastic waves and in particular on the vibrations of an elastic globe", Proceedings of the London Mathematical Society, 30, 98-120. https://doi.org/10.1112/plms/s1-30.1.98.
  12. Eringen, A.C. (1999), Microcontinuum field theories I: Foundations and solids, Springer-Verlag, New York.
  13. Eringen, A.C. (1984), "Plane wave in nonlocal micropolar elasticity", Int. J. Eng. Sci., 22(8-10), 1113-1141. https://doi.org/10.1016/0020-7225(84)90112-5
  14. Ezzat, M.A. and El-Bary. A.A. (2017), "Fractional magneto-thermo- elastic materials with phase-lag Green-Naghdi theories", Steel Compos. Struct., 24(3), 297-307. http://doi.org/10.12989/scs.2017.24.3.297.
  15. Green, A.E. and Lindsay, F.A. (1972), "Thermoelasticity", J. Elast., 2, 1-7. https://doi.org/10.1007/BF00045689
  16. Itu, C., Ochsner, A., Vlase, S. and Marin, M.I. (2019), "Improved rigidity of composite circular plates through radial ribs", Proceedings of the Institution of Mechanical Engineers Part L - J. Materials-Design and Appl., 233(8), 1585-1593. https://doi.org/10.1177/1464420718768049
  17. Kumar, A., Shivay, O.N. and Mukhopadhyay, S. (2019), "Infinite speed behavior of two-temperature Green-Lindsay thermoelasticity theory under temperature-dependent dependent thermal conductivity", Z. Angew. Math. Phys., 70, 26. https://doi.org/10.1007/s00033-018-1064-0
  18. Lata, P. and Singh, B. (2019), "Effect of nonlocal parameter on nonlocal thermoelastic solid due to inclined load", Steel Compos. Struct., 33(1), 123-131. https://doi.org/10.12989/scs.2019.33.1.123.
  19. Lata, P., Kaur, I. and Singh, K. (2020), "Transversely isotropic thin circular plate with multi-dual-phase-lag heat transfer", Steel Compos. Struct., 35(3), 343-351. https://doi.org/10.12989/scs.2020.35.3.343.
  20. Loghman, A., Nasr, M. and Arefi, M. (2017), "Nonsymmetric thermomechanical analysis of a functionally graded cylindersubjected to mechanical, thermal, and magnetic loads", J. Therm. Stress., 40(6), 765-782. https://doi.org/10.1080/01495739.2017.1280380
  21. Lomarkin, V.A. (1976), The Theory of Elasticity of Non-homo geneous Bodies, Moscow.
  22. Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Sol., 15, 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.
  23. Marin, M. (1997), "An uniqueness result for body with voids in linear thermoelasticity", Rendiconti di Matematica, Roma, 17(7), 103-113.
  24. Marin, M. (1999), "An evolutionary equation in thermoelasticity of dipolar bodies", J. Math. Phys., 40(3), 1391-1399. DOI: 10.1063/1.532809.
  25. Marin, M., Baleanu, D. and Vlase, S. (2017), "Effect of micro-temperatures for micropolar thermoelastic bodies", Struct. Eng. Mech., 61(3), 381-387. https://doi.org/10.12989/sem.2017.61.3.381.
  26. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595
  27. Mirzaei, M.M.H., Arefi, M. and Loghman, A. (2019), "Creep analysis of a rotating functionally graded simple blade: steady state analysis", Steel Compos. Struct., 33(3), 463-472. https://doi.org/10.12989/scs.2019.33.3.463.
  28. Noda, N. (1986), Thermal Stresses in Materials with Temperature Dependent Properties. in R.B. Hetnarski (Ed.),Therm. Stress. I, North-Holland, Amsterdam.
  29. Othman, M.I.A. (2003), "State space approach to generalized thermoelasticity plane waves with two relaxation times under the dependence of the modulus of elasticity on reference temperature", Can. J. Phys., 81(12), 1403-1418. doi: 10.1139/P03-100
  30. Othman, M.I.A. and Marin, M. (2017), "Effect of thermal loading due to laser pulse on thermoelastic porous media under G-N theory", Results in Phys., 7, 3863-3872. https://doi.org/10.1016/j.rinp.2017.10.012.
  31. Othman, M.I.A. (2011), "State-space approach to generalized thermoelastic problem with temperature-dependent elastic moduli and internal heat source", J. Appl. Mech. Tech. Phys., 52, 644-656. https://doi.org/10.1134/S0021894411040183
  32. Othman, M.I.A., Elmaklizi, Y.D. and Said, S.M. (2013), "Generalized thermoelastic medium with temperature dependent properties for different theories under the effect of gravity field", Int. J. Thermophys., 34(3), 521-537. DOI 10.1007/s10765-013-1425-z
  33. Othman, M.I.A. and Said, S.M. (2014), "2-D problem of magneto- thermoelasticity fiber-reinforced medium under temperature- dependent properties with three-phase-lag theory", Meccanica, 49(5) 1225-1241. DOI 10.1007/s11012-014-9879-z.
  34. Othman, M.I.A., Khan, A., Jahangir, R. and Jahangir, A. (2019), "Analysis on plane waves through magneto-thermoelastic microstretch rotating medium with temperature dependent elastic properties", Appl. Math. Model., 65, 535-548. DOI: 10.1016/j.apm.2018.08.032.
  35. Said, S.M. and Othman, M.I.A. (2016), "Wave propagation in a two-temperature fiber-reinforced magneto-thermoelastic medium with three-phase-lag model", Struct. Eng. Mech., 57(2), 201-220. https://doi.org/10.12989/sem.2016.57.2.201.
  36. Tzou, D.Y. (1995a), "A unified field approach for heat conduction from macro- to micro-scales", J. Heat Transfer, 117, 8-16. https://doi.org/10.1115/1.2822329
  37. Tzou, D.Y. (1995b), "The generalized lagging response in small-scale and high-rate heating", Int. J. Heat Mass Transfer, 38, 3231-3240. https://doi.org/10.1016/0017-9310(95)00052-B.

피인용 문헌

  1. Effect of gravity on a magneto-thermoelastic porous medium with the frame of a memory-dependent derivative in the context of the 3PHL model vol.40, pp.6, 2021, https://doi.org/10.12989/scs.2021.40.6.881