References
- Bachher, M. and Sarkar, N. (2018), "Nonlocal theory of thermoelastic materials with voids and fractional derivative heat transfer", Wave. Random Complex Media, 29(4), 595-613 https://doi.org/10.1080/17455030.2018.1457230.
- Cattaneo, C. (1958), "A form of heat conduction equation which eliminates the paradox of instantaneous propagation", Comptes Rendus, 247, 431-433.
- Cheng, J. and Kar, A. (1997), "Mathematical model for laser densification of ceramic coating", J. Mater. Sci., 32, 6269-6278. https://doi.org/10.1023/A:1018693212407.
- Das, N., Sarkar, N. and Lahiri, A. (2019), "Reflection of plane waves from the stress-free isothermal and insulated boundaries of a nonlocal thermoelastic solid", Appl. Math. Model., 73, 526-544. https://doi.org/10.1016/j.apm.2019.04.028.
- Dong, Y., Cao, B.Y. and Guo, Z.Y. (2014), "Size dependent thermal conductivity of Si nanosystems based on phonon gas dynamics", Physica E, 56, 256. https://doi.org/10.1016/j.physe.2013.10.006.
- Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer, New York.
- Guo, J.G. and Zhao,Y.P. (2005), "The size-dependent elastic properties of nanofilms with surface effects", J. Appl. Phys., 98, 074306. https://doi.org/10.1063/1.2071453.
- Gupta, M. and Mukhopadhyay, S. (2019), "A study on generalized thermoelasticity theory based on non-local heat conduction model with dual-phase-lag", J. Therm. Stress., 42(9), 1123-1135. https://doi.org/10.1080/01495739.2019.1614503.
- Guyer, R.A. and Krumhansl, J.A. (1966), "Solution of the linearized phonon Boltzmann equation", Phys. Rev., 148, 766. https://doi.org/10.1103/PhysRev.148.766
- Kansal, T. (2019), "Fundamental solution in the theory of thermoelastic diffusion materials with double porosity", J. Solid Mech., 11(2), 281-296.
- Kim, J.Y., Jang, K., Yang, S.J. and Baek, J.H. (2016), "Simulation study of the thermal and the thermoelastic effects induced by pulsed laser absorption in human skin", J. Korea. Phys. Soc., 68(8), 979-988. https://doi.org/10.3938/jkps.68.979.
- Kumar, R., Vashishth, A.K. and Ghangas, S. (2019a), "Nonlocal heat conduction approach in a bi-layer tissue during magnetic fluid hyperthermia with dual phase lag model", Bio-Med. Mater. Eng., 30, 387-402. https://doi.org/10.3233/BME-191061.
- Kumar, R., Vashishth, A.K. and Ghangas, S. (2019b), "Phase-lag effects in skin tissue during transient heating", Int. J. Appl. Mech. Eng., 24(3), 603-623. https://doi.org/10.2478/ijame-2019-0038.
- Kumar, R., Vashishth, A.K. and Ghangas, S. (2020), "Fundamental solution and study of plane waves in bio-thermoelastic medium with DPL", J. Solid Mech., 12(2), 278-296. https://doi.org/10.22034/JSM.2019.582000.1381.
- Li, X., Li, C., Xue, Z. and Tian, X. (2019), "Investigation of transient thermo-mechanical responses on the triple-layered skin tissue with temperature dependent blood perfusion rate", Int. J. Therm. Sci., 139, 339-349. https://doi.org/10.1016/j.ijthermalsci.2019.02.022.
- Li, X., Qin, Q.H. and Tian, X. (2020), "Thermo-viscoelastic analysis of biological tissue during hyperthermia treatment", Appl. Math. Model., 79, 881-895. https://doi.org/10.1016/j.apm.2019.11.007.
- Li, X., Xue, Z. and Tian, X. (2018), "A modified fractional order generalized bio-thermoelastic theory with temperature-dependent thermal material properties", Int. J. Therm. Sci., 132, 249-256. https://doi.org/10.1016/j.ijthermalsci.2018.06.007.
- Li, X., Zhong, Y., Smith, J. and Gu, C. (2017), "Non-fourier based thermal-mechanical tissue damage prediction for thermal ablation", Bioengineered, 8(1), 71-77. https://doi.org/10.1080/21655979.2016.1227609.
- Pennes, H.H. (1948), "Analysis of tissue and arterial blood temperature in the resting forearm", J. Appl. Physiol., 1, 93-122. https://doi.org/10.1152/jappl.1948.1.2.93
- Sarkar, N. (2020), "Thermoelastic responses of a finite rod due to nonlocal heat conduction", Acta Mech, 231, 947-955. https://doi.org/10.1007/s00707-019-02583-9.
- Sharma, S. and Kumar, K. (2014), "Influence of heat sources and relaxation time on temperature distribution in tissues", Int. J. Appl. Mech. Eng., 19(2), 427-433. https://doi.org/10.2478/ijame-2014-0029.
- Sharma, S., Sharma, K. and Rani Bhargava, R. (2013), "Wave motion and representation of fundamental solution in electromicrostretch viscoelastic solids", Mater. Phys. Mech., 17, 93-110.
- Shen, W., Zhang, J. and Yang, F. (2005), "Modeling and numerical simulation of bioheat transfer and biomechanics in soft tissue", Math. Comput. Model., 41(11-12), 1251-1265. https://doi.org/10.1016/j.mcm.2004.09.006.
- Sherief, H.H., Hamza, F.A. and Saleh, H.A. (2004), "The theory of generalized thermoelastic diffusion", Int. J. Eng. Sci., 42, 591-608. https://doi.org/10.1016/j.ijengsci.2003.05.001.
- Sobolev, S. (1994), "Equations of transfer in non-local media", Int. J. Heat Mass Transf., 37, 2175. https://doi.org/10.1016/0017-9310(94)90319-0
- Svanadze, M. (2018a), Potential Method in Mathematical Theories of Multi-Porosity Media, Springer International Publishing.
- Svanadze, M. (2018b), "Fundamental solutions in the linear theory of thermoelasticity for solds with triple porosity", Math. Mech. Solid., 24(4), 919-938. https://doi.org/10.1177/1081286518761183.
- Tzou, D.Y. (1996), "A unified field approach for heat conduction from macro-to-microscales", ASME J. Heat Transf., 117, 8-16. https://doi.org/10.1115/1.2822329
- Tzou, D.Y. and Guo, Z.Y. (2010), "Nonlocal behavior in thermal lagging", Int. J. Therm. Sci., 49(7), 1133-1137. https://doi.org/10.1016/j.ijthermalsci.2010.01.022
- Tzou, D.Y. and Guo, Z.Y. (2010), "Nonlocal behavior in thermal lagging", Int. J. Therm. Sci., 49, 1133-1137. https://doi.org/10.1016/j.ijthermalsci.2010.01.022
- Vernotte, P. (1958), "Les paradoxes de la theorie continue de lequation de la chaleur", Comp. Rend, 246, 3154-3155.
- Xiong, C. and Guo, Y. (2017), "Electromagneto-thermoelastic diffusive plane waves in a half-space with variable material properties under fractional order thermoelastic diffusion", Int. J. Appl. Electromagnet. Mech., 53, 251-269. https://doi.org/10.3233/JAE-160038.
- Xu, F., Lu, T.J. and Seffen, K.A. (2008), "Biothermomechanical behavior of skin tissue", Acta Mech. Sin., 24(1), 1-23. https://doi.org/10.1007/s10409-007-0128-8.
- Xu, F., Seffen, K.A. and Lu, T.J. (2008), "Non-Fourier analysis of skin biothermomechanics", Int. J. Heat Mass Tran., 51(9-10), 2237-2259. https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.024.
- Yu, Y.J., Hu, W. and Tian, X.G. (2014), "A novel generalized thermoelasticity model based on memory-dependent derivative", Int. J. Eng. Sci., 81, 123. https://doi.org/10.1016/j.ijengsci.2014.04.014.
- Yu, Y.J., Li, G.L. and Xue, Z.N. (2016), "The dilemma of hyperbolic heat conduction and its settlement by incorporating spatially nonlocal effect at nanoscale", Phys. Lett. A, 380, 255. https://doi.org/10.1016/j.physleta.2015.09.030.
- Yu, Y.J., Tian, X.G. and Lu, T.J. (2013), "Fractional order generalized electro-magneto-thermo-elasticity", Eur. J. Mech. A/Solid., 42, 188. https://doi.org/10.1016/j.euromechsol.2013.05.006.