References
- Amran, Y.M., Farzadnia, N. and Ali, A.A. (2015), "Properties and applications of foamed concrete; a review", Constr. Build. Mater., 101, 990-1005. https://doi.org/10.1016/j.conbuildmat.2015.10.112.
- Aravind, N.R., Sathyan, D. and Mini, K.M. (2020), "Rice husk incorporated foam concrete wall panels as a thermal insulating material in buildings", Indoor Built Environ., 29(5), 721-729. https://doi.org/10.1177/1420326X19862017.
- Assi, I.M., Qudeimat, E.M. and Hunaiti, Y.M. (2003), "Ultimate moment capacity of foamed and lightweight aggregate concrete-filled steel tubes", Steel Compos. Struct., 3(3), 199-212. https://doi.org/10.12989/scs.2003.3.3.199.
- ASTM C 177 (1997), Test Method for Steady-state Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-hot-plate Apparatus, American Society for Testing Materials, Philadelphia.
- ASTM standard C 384-88 (1988), Standard Test Method for Impedance and Absorption of Acoustical Materials by the Impedance Tube Method, American Society for Testing Materials, Philadelphia.
- CanbaZ, M., Dakman, H., Arslan, B. and Buyuksungur, A. (2019), "The effect of high-temperature on foamed concrete", Comput. Concrete, 24(1), 1-6. https://doi.org/10.12989/cac.2019.24.1.001.
- Demirboga, R. (2003), "Influence of mineral admixtures on thermal conductivity and compressive strength of mortar", Energy Build., 35(2), 189-192. https://doi.org/10.1016/S0378-7788(02)00052-X.
- Falliano, D., De Domenico, D., Ricciardi, G. and Gugliandolo, E. (2018), "Experimental investigation on the compressive strength of foamed concrete: Effect of curing conditions, cement type, foaming agent and dry density", Constr. Build. Mater., 165, 735-749. https://doi.org/10.1016/j.conbuildmat.2017.12.241.
- Falliano, D., De Domenico, D., Ricciardi, G. and Gugliandolo, E. (2018), "Key factors affecting the compressive strength of foamed concrete", IOP Conf. Ser.: Mater. Sci. Eng., 431(6), 062009. https://doi.org/10.1088/1757-899X/431/6/062009
- Falliano, D., De Domenico, D., Ricciardi, G. and Gugliandolo, E. (2019), "Compressive and flexural strength of fiber-reinforced foamed concrete: Effect of fiber content, curing conditions and dry density", Constr. Build. Mater., 198, 479-493. https://doi.org/10.1016/j.conbuildmat.2018.11.197.
- Gowri, R.K. (2018) "Utilization of fly ash and ultrafine GGBS for higher strength foam concrete", IOP Conf. Ser.: Mater. Sci. Eng., 310, 1-10. https://doi.org/10.1088/1757-899X/310/1/012070
- Harada, C., Saito, Y., Nakamura, Y. and Minato, H. (2001), "The effect of sodium hydroxide treatment of rice straw on in situ disappearance of hemicellulose and lignin in its cell wall", Nihon Chikusan Gakkaiho, 72(1), 19-25. https://doi.org/10.2508/chikusan.72.19
- IS 12269 (2013), Ordinary Portland Cement 53 Grade-Specification, Bureau of Indian Standards, New Delhi, India.
- IS 13630, Part 6 (2006), Ceramic Tiles-Methods of Test, Sampling and Basis for Acceptance.
- IS2250 (1981), Code of Practice for Preparation and Use of Masonry Mortars, Bureau of Indian Standards, New Delhi, India.
- IS6441 Part-II (1972) (Reaffirmed 1997), Methods of Test for Autoclaved Cellular Concrete Products, Bureau of Indian Standards, New Delhi.
- Jitchaiyaphum, K., Sinsiri, T. and Chindaprasirt, P. (2011), "Cellular lightweight concrete containing pozzolan materials", Procedia Eng., 14, 1157-1164. https://doi.org/10.1016/j.proeng.2011.07.145.
- Jones, M.R. and McCarthy, A. (2005), "Preliminary views on the potential of foamed concrete as a structural material", Mag. Concrete Res., 57(1), 21-31. https://doi.org/10.1680/macr.2005.57.1.21.
- Jones, M.R., Ozlutas, K. and Zheng, L. (2017), "High-volume, ultra-low-density fly ash foamed concrete", Mag. Concrete Res., 69(22), 1146-1156. https://doi.org/10.1680/jmacr.17.00063.
- Kunhanandan Nambiar, E.K. and Ramamurthy, K. (2008), "Fresh state characteristics of foam concrete", J. Mater. Civil Eng., 20(2), 111-117. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:2(111).
- Lim, S.K., Tan, C.S., Zhao, X. and Ling, T.C. (2015), "Strength and toughness of lightweight foamed concrete with different sand grading", KSCE J. Civil Eng., 19(7), 2191-2197. https://doi.org/10.1007/s12205-014-0097-y.
- Liu, D., Wang, F., Fu, F. and Wang, H. (2017), "Experimental research on the failure mechanism of foam concrete with C-Channel embedment", Comput. Concrete, 20(3), 263-273. https://doi.org/10.12989/cac.2017.20.3.263.
- Liu, J., Zhou, H. and Ouyang, P. (2013), "Effect of straw mixing amount on mechanical properties of admixture-adding hollow block", J. Wuhan Univ. Technol.-Mater. Sci. Ed., 28(3), 508-513. https://doi.org/10.1007/s11595-013-0722-5.
- Liu, M.Y.J., Alengaram, U.J., Jumaat, M.Z. and Mo, K.H. (2014), "Evaluation of thermal conductivity, mechanical and transport properties of lightweight aggregate foamed geopolymer concrete", Energy Build., 72, 238-245. https://doi.org/10.1016/j.enbuild.2013.12.029.
- Lv, X., Cao, M., Li, Y., Li, X., Li, Q., Tang, R., Wang, Q. and Duan, Y. (2015), "A new absorbing foam concrete: preparation and microwave absorbing properties", Adv. Concrete Constr., 3(2), 103-111. http://dx.doi.org/10.12989/acc.2015.3.2.103.
- Madhwani, H., Sathyan, D. and Mini, K.M. (2020), "Study on durability and hardened state properties of sugarcane bagasse fiber reinforced foam concrete", Mater. Today Proc. https://doi.org/10.1016/j.matpr.2020.10.313.
- Mahlia, T.M.I., Taufiq, B.N. and Masjuki, H.H. (2007), "Correlation between thermal conductivity and the thickness of selected insulation materials for building wall", Energy Build., 39(2), 182-187. https://doi.org/10.1016/j.enbuild.2006.06.002.
- Morsy, M.I.N. (2011) "Properties of rice straw cementitious composite", Univ. Tech. Darmstadt, Allemagne.
- Nambiar, E.K. and Ramamurthy, K. (2007), "Air-void characterisation of foam concrete", Cement Concrete Res., 37(2), 221-230. ttps://doi.org/10.1016/j.cemconres.2006.10.009.
- Nambiar, E.K. and Ramamurthy, K. (2009), "Shrinkage behavior of foam concrete", J. Mater. Civil Eng., 21(11), 631-636. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:11(631).
- Nambiar. E.K. and Ramamurthy. K. (2006), "Influence of filler type on the properties of foam concrete", Cement Concrete Compos., 28(5), 475-480. https://doi.org/10.1016/j.cemconcomp.2005.12.001.
- Nandi, S., Chatterjee, A., Samanta, P. and Hansda, T. (2016), "Cellular concrete and its facets of application in civil engineering", Int. J. Eng. Res., 5(1), 37-43.
- Panesar, D.K. (2013), "Cellular concrete properties and the effect of synthetic and protein foaming agents", Constr. Build. Mater., 44, 575-584. https://doi.org/10.1016/j.conbuildmat.2013.03.024.
- Raj, A., Sathyan, D. and Mini, K.M. (2019), "Physical and functional characteristics of foam concrete: A review", Constr. Build. Mater., 221, 787-799. https://doi.org/10.1016/j.conbuildmat.2019.06.052.
- Raj, B., Sathyan, D., Madhavan, M.K. and Raj, A. (2020), "Mechanical and durability properties of hybrid fiber reinforced foam concrete", Constr. Build. Mater., 245, 118373, https://doi.org/10.1016/j.conbuildmat.2020.118373.
- Reisi, M., Dadvar, S.A. and Sharif, A. (2017), "Microstructure and mixture proportioning of non-structural foamed concrete with silica fume", Mag. Concrete Res., 69(23), 1218-1230. https://doi.org/10.1680/jmacr.17.00066.
- Saje, D., Bandelj, B., Sustersic, J., Lopatic, J. and Saje, F. (2011), "Shrinkage of polypropylene fibre reinforced high performance concrete", J. Mater. Civil Eng., 23(7), 941-952. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000258.
- Saygili, A. and Baykal, G. (2011), "A new method for improving the thermal insulation properties of fly ash.", Energy Build., 43(11), 3236-3242. https://doi.org/10.1016/j.enbuild.2011.08.024.
- Sengul, O., Azizi, S., Karaosmanoglu, F. and Tasdemir, M.A. (2011), "Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete", Energy Build., 43(2-3), 671-676. https://doi.org/10.1016/j.enbuild.2010.11.008.
- Usubharatana, P. and Phungrassami, H. (2015), "Development of thermal insulation materials for packaging made from agricultural wastes", Acad. J. Sci., 4, 133-141.