DOI QR코드

DOI QR Code

Pozzolanicity identification in mortars by computational analysis of micrographs

  • Filho, Rafael G.D. Molin (Department of Chemical Engineering, State University of Maringa) ;
  • Rosso, Jaciele M. (Department of Physics, State University of Maringa) ;
  • Volnistem, Eduardo A. (Department of Physics, State University of Maringa) ;
  • Vanderlei, Romel D. (Department of Civil Engineering, State University of Maringa) ;
  • Longhi, Daniel A. (Advanced Campus in Jandaia do Sul, Federal University of Parana) ;
  • de Souza, Rodrigo C.T. (Advanced Campus in Jandaia do Sul, Federal University of Parana) ;
  • Paraiso, Paulo R. (Department of Chemical Engineering, State University of Maringa) ;
  • Jorge, Luiz M. de M. (Department of Chemical Engineering, State University of Maringa)
  • 투고 : 2020.05.20
  • 심사 : 2021.01.19
  • 발행 : 2021.02.25

초록

The incorporation of pozzolans to Portland cement pastes adds value in the development of new materials for the construction industry. This study presents a new computational method, complementary to the pozzolanic identification by compressive strength at 28 days method, for supporting the validation of pozzolanic mortars for non-structural purposes. An algorithm capable of classifying the pixels of micrographs of specimens fragments was developed. Therefore, comparative analyses were generated from fractional Gaussian representations in four intervals of the same amplitude that indicated the predispositions to form larger void indices (intervals 1 and 2). The results showed that the computational method indicators are in accordance with the physical and chemical indicators.

키워드

참고문헌

  1. ABNT NBR 12653 (2015), Pozzolanic materials-Requirements, Brazilian National Standards Organization (Associacao Brasileira de Normas Tecnicas), Rio de Janeiro, Brazil.
  2. ABNT NBR 15895 (2010), Pozzolanic materials-Determination of calcium hydroxide fixed-Modified Chapelle's Method, Brazilian National Standards Organization (Associacao Brasileira de Normas Tecnicas); Rio de Janeiro, Brazil.
  3. ABNT NBR 5752 (2014), Pozzolanic Materials-Determination of the Performance Index with Portland Cement at 28 Days, Brazilian National Standards Organization (Associacao Brasileira de Normas Tecnicas), Rio de Janeiro, Brazil.
  4. ABNT NBR 8952 (2018), Sampling and preparation of pozzolans-Procedure, Brazilian National Standards Organization (Associacao Brasileira de Normas Tecnicas), Rio de Janeiro, Brazil.
  5. ASTM C311/C311M (2018), Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete, American Society for Testing and Materials, West Conshohocken, USA.
  6. ASTM C618 (2019), Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, American Society for Testing and Materials, West Conshohocken, USA.
  7. Azarafza, M., Feizi-Derakhshi, M. and Azarafza, Mo. (2017), "Computer modeling of crack propagation in concrete retaining walls: A case study", Comput. Concrete, 19(5), 509-514. https://doi.org/10.12989/cac.2017.19.5.509.
  8. Bacaicoa, I., Lutje, M., Salzer, P., Umbach, C., Bruckner-Foit, A., Heim, H. and Middendorf, B. (2017), "Comparative investigation of two-dimensional imaging methods and X-ray tomography in the characterization of microstructure", Mater. Test., 59(10), 829-836. https://doi.org/10.3139/120.111076.
  9. Bahurudeen, A. and Santhanam, M. (2015), "Influence of different processing methods on the pozzolanic performance of sugarcane bagasse ash", Cement Concrete Compos., 56, 32-45. https://doi.org/10.1016/j.cemconcomp.2014.11.002.
  10. Basyigit, C., Comak, B., Kilincarslan, S. and Uncu, I.S. (2012), "Assessment of concrete compressive strength by image processing technique", Constr. Build. Mater., 37, 526-532. https://doi.org/10.1016/j.conbuildmat.2012.07.055.
  11. Baygin, M., Ozkaya, S.G., Ozdemir, M.A. and Kazaz, I. (2017). "A new approach based on image processing for measuring compressive strength of structures", Int. J. Int. Syst. Appl. Eng., 21-25. https://doi.org/10.18201/ijisae.2018SpecialIssue31419.
  12. Belfiore, C.M., Fichera, G.V., Ortolano, G., Pezzino, A., Visallia, R. and Zappala, L. (2016), "Image processing of the pozzolanic reactions in Roman mortars via X-Ray map analyser", Microchem. J., 125, 242-253. https://doi.org/10.1016/j.microc.2015.11.022.
  13. Cavalcante, D.G., Marques, M.G. dos S., Melo Filho, J.A. and Vasconcelos, R.P. de. (2018), "Influence of the levels of replacement of portland cement by metakaolin and silica extracted from rice husk ash in the physical and mechanical characteristics of cement pastes", Cement Concrete Compos., 94, 296-306. https://doi.org/10.1016/j.cemconcomp.2018.10.001.
  14. Cordeiro, G.C., Filho, R.D.T. and Almeida, R.S. de. (2011), "Influence of ultrafine wet grinding on pozzolanic activity of submicrometre sugar cane bagasse ash", Adv. Appl. Ceram., 110(8), 453-456. https://doi.org/10.1179/1743676111Y.0000000050.
  15. Fairbairn, E.M.R., Americano, B.B., Cordeiro, G.C., Paula, T.P., Toledo Filho, R.D. and Silvoso, M.M. (2010), "Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits", J. Environ. Manage., 91(9), 1864-1871. https://doi.org/10.1016/j.jenvman.2010.04.008
  16. Fonseca, P.C. and Scherer, G.W. (2015), "An image analysis procedure to quantify the air void system of mortar and concrete", Mater. Struct., 48(10), 3087-3098. https://doi.org/10.1617/s11527-014-0381-9.
  17. Gayana, B.C. and Chandar K.R. (2018), "Sustainable use of mine waste and tailings with suitable admixture as aggregates in concrete pavements-A review", Adv. Concrete Constr., 6(3), 221-243. https://doi.org/10.12989/acc.2018.6.3.221.
  18. Guo, Q., Bian, Y., Li, L., Jiao, Y., Tao, J. and Xiang, C. (2015), "Stereological estimation of aggregate gradation using digital image of asphalt mixture", Constr. Build. Mater., 94, 458-466. https://doi.org/10.1016/j.conbuildmat.2015.07.046.
  19. Han, J., Wang, K., Wang, X. and Monteiro, P.J.M. (2016), "2D image analysis method for evaluating coarse aggregate characteristic and distribution in concrete", Constr. Build. Mater., 127, 30-42. https://doi.org/10.1016/j.conbuildmat.2016.09.120.
  20. Islam, A.B.M.S. (2020), "Computer aided failure prediction of reinforced concrete beam", Comput. Concrete, 25(1), 67-73. https://doi.org/10.12989/cac.2020.25.1.067.
  21. JH Filho, G.A. and Pereira, E. (2017), "Atividade pozolanica de adicoes minerais para cimento portland (Parte ii): indice de atividade pozolanica com cimento portland (IAP), difracao de raios-x (DRX) e termogravimetria (TG/DTG)", Rev. Mater, 22. https://doi.org/10.1590/s1517-707620170003.0206.
  22. Juez, J.M., Artoni, R. and Cazacliu, B. (2017), "Monitoring of concrete mixing evolution using image analysis", Powder Tech., 305, 477-487. https://doi.org/10.1016/j.powtec.2016.10.008.
  23. Karr, U., Schuller, R., Fitzka, M., Denk, A., Strauss, A. and Mayer. H. (2017), "Very high cycle fatigue testing of concrete using ultrasonic cycling", Mater. Test., 59, 438-444. https://doi.org/10.3139/120.111021.
  24. Lager, G.A., Jorgensen, J.D. and Rotella. F.J. (1982), "Crystal structure and thermal expansion of α‐quartz SiO2 at low temperatures", J. Appl. Phys., 53, 6751-6756. https://doi.org/10.1063/1.330062.
  25. Lima, A.S. and Rossignolo, J.A. (2010), "Estudo das caracteristicas quimicas e fisicas da cinza da casca da castanha de caju para uso em materiais cimenticios", Acta Scientiarum. Technol., 32(4), 383-389. https://doi.org/10.4025/actascitechnol.v32i4.7434.
  26. Mehta, P.K. and Monteiro, P.J.M. (2014), Concreto: Microestrutura, Propriedades e Materiais, Sao Paulo, Ibracon, 2Edition, Brazil.
  27. Molin Filho, R.G.D, Longhi, D.A., Thom De Souza, R.C., Ferrer, M.M., Vanderlei, R.D., Paraiso, P.R. and Jorge, L.M. de M. (2018), "Self-compacting mortar with sugarcane bagasse ash: development of a sustainable alternative for Brazilian civil construction", Environ. Dev. Sustain., 21(5), 2125-2143. https://doi.org/10.1007/s10668-018-0127-x.
  28. Montgomery, D.C. and Runger, G.C. (2014), Applied Statistics and Probability for Engineers, John Wiley & Sons, Hoboken, NJ, USA.
  29. Moranville-Regourd, M. (1992), Microstructure of High Performance Concrete, Ed. Malier Y, High Performance Concrete from Material to Structure, E & FN Spon, London.
  30. Rukzona, S. and Chindaprasirt, P. (2011), "Chloride penetration and corrosion resistance of ground fly ash blended cement mortar", Int. J. Mater. Res., 102(3), 335-339. https://doi.org/10.3139/146.110479.
  31. Sadowski, L., Nikoo, M. and Nikoo, M. (2018), "Concrete compressive strength prediction using the imperialist competitive algorithm". Comput. Concrete, 22(4), 355-363. https://doi.org/10.12989/CAC.2018.22.4.355.
  32. Saha, S. and Rajasekaran C. (2016), "Mechanical properties of recycled aggregate concrete produced with Portland Pozzolana Cement", Adv. Concrete Constr., 4(1), 27-35. http://dx.doi.org/10.12989/acc.2016.4.1.027.
  33. Tekin, I., Birgul, R. and Aruntas, H.Y. (2018), "X-ray CT monitoring of macro void development in mortars exposed to sulfate attack", Comput. Concrete, 21(4), 367-376. https://doi.org/10.12989/CAC.2018.21.4.367.
  34. Wang, X., Wang, K., Han, J. and Taylord. P. (2015), "Image analysis applications on assessing static stability and flowability of self-consolidating concrete", Cement Concrete Compos., 62, 156-167. https://doi.org/10.1016/j.cemconcomp.2015.05.002.