• 제목/요약/키워드: algorithm of image analysis

검색결과 1,495건 처리시간 0.033초

The Development of Multi-view point Image Interpolation Method Using Real-image

  • Yang, Kwang-Won;Park, Young-Bin;Huh, Kyung-Bin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.129.1-129
    • /
    • 2001
  • In this paper, we present an approach for matching images from finding interesting points and applying new image interpolation algorithm. New algorithms are developed that automatically align the input images match them and reconstruct 3-D surfaces. The interpolation algorithm is designed to cope with simple shapes. The proposed image interpolation algorithm generate a rotation image about vertical axes by an any angle from 4 base images. Each base image that was obtained from CCD camera has an angle difference of 90$^{\circ}$ The proposed image interpolation algorithm use the geometric analysis of image and depth information.

  • PDF

Development of Pattern Classifying System for cDNA-Chip Image Data Analysis

  • Kim, Dae-Wook;Park, Chang-Hyun;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.838-841
    • /
    • 2005
  • DNA Chip is able to show DNA-Data that includes diseases of sample to User by using complementary characters of DNA. So this paper studied Neural Network algorithm for Image data processing of DNA-chip. DNA chip outputs image data of colors and intensities of lights when some sample DNA is putted on DNA-chip, and we can classify pattern of these image data on user pc environment through artificial neural network and some of image processing algorithms. Ultimate aim is developing of pattern classifying algorithm, simulating this algorithm and so getting information of one's diseases through applying this algorithm. Namely, this paper study artificial neural network algorithm for classifying pattern of image data that is obtained from DNA-chip. And, by using histogram, gradient edge, ANN and learning algorithm, we can analyze and classifying pattern of this DNA-chip image data. so we are able to monitor, and simulating this algorithm.

  • PDF

향상된 세일리언시 맵과 슈퍼픽셀 기반의 효과적인 영상 분할 (Efficient Image Segmentation Algorithm Based on Improved Saliency Map and Superpixel)

  • 남재현;김병규
    • 한국멀티미디어학회논문지
    • /
    • 제19권7호
    • /
    • pp.1116-1126
    • /
    • 2016
  • Image segmentation is widely used in the pre-processing stage of image analysis and, therefore, the accuracy of image segmentation is important for performance of an image-based analysis system. An efficient image segmentation method is proposed, including a filtering process for super-pixels, improved saliency map information, and a merge process. The proposed algorithm removes areas that are not equal or of small size based on comparison of the area of smoothed superpixels in order to maintain generation of a similar size super pixel area. In addition, application of a bilateral filter to an existing saliency map that represents human visual attention allows improvement of separation between objects and background. Finally, a segmented result is obtained based on the suggested merging process without any prior knowledge or information. Performance of the proposed algorithm is verified experimentally.

세포 외곽선 추출 알고리즘의 병렬화 (Parallelization of Cell Contour Line Extraction Algorithm)

  • 이호석;유숙현;권희용
    • 한국멀티미디어학회논문지
    • /
    • 제18권10호
    • /
    • pp.1180-1188
    • /
    • 2015
  • In this paper, a parallel cell contour line extraction algorithm using CUDA, which has no inner contour lines, is proposed. The contour of a cell is very important in a cell image analysis. It could be obtained by a conventional serial contour tracing algorithm or parallel morphology operation. However, the cell image has various damages in acquisition or dyeing process. They could be turn into several inner contours, which make a cell image analysis difficult. The proposed algorithm introduces a min-max coordinates table into each CUDA thread block, and removes the inner contour in parallel. It is 4.1 to 7.6 times faster than a conventional serial contour tracing algorithm.

교량케이블 영상기반 손상탐지 (A Vision-based Damage Detection for Bridge Cables)

  • ;이종재
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2011년도 정기 학술발표대회
    • /
    • pp.39-39
    • /
    • 2011
  • This study presents an effective vision-based system for cable bridge damage detection. In theory, cable bridges need to be inspected the outer as well as the inner part. Starting from August 2010, a new research project supported by Korea Ministry of Land, Transportation Maritime Affairs(MLTM) was initiated focusing on the damage detection of cable system. In this study, only the surface damage detection algorithm based on a vision-based system will be focused on, an overview of the vision-based cable damage detection is given in Fig. 1. Basically, the algorithm combines the image enhancement technique with principal component analysis(PCA) to detect damage on cable surfaces. In more detail, the input image from a camera is processed with image enhancement technique to improve image quality, and then it is projected into PCA sub-space. Finally, the Mahalanobis square distance is used for pattern recognition. The algorithm was verified through laboratory tests on three types of cable surface. The algorithm gave very good results, and the next step of this study is to implement the algorithm for real cable bridges.

  • PDF

3D 형광이미지 분석을 위한 레인 검출 및 추적 알고리즘 (Lane Detection and Tracking Algorithm for 3D Fluorescence Image Analysis)

  • 이복주;문혁;최영규
    • 반도체디스플레이기술학회지
    • /
    • 제15권1호
    • /
    • pp.27-32
    • /
    • 2016
  • A new lane detection algorithm is proposed for the analysis of DNA fingerprints from a polymerase chain reaction (PCR) gel electrophoresis image. Although several research results have been previously reported, it is still challenging to extract lanes precisely from images having abrupt background brightness difference and bent lanes. We propose an edge based algorithm for calculating the average lane width and lane cycle. Our method adopts sub-pixel algorithm for extracting rising-edges and falling edges precisely and estimates the lane width and cycle by using k-means clustering algorithm. To handle the curved lanes, we partition the gel image into small portions, and track the lane centers in each partitioned image. 32 gel images including 534 lanes are used to evaluate the performance of our method. Experimental results show that our method is robust to images having background difference and bent lanes without any preprocessing.

Study on Image Processing Techniques Applying Artificial Intelligence-based Gray Scale and RGB scale

  • Lee, Sang-Hyun;Kim, Hyun-Tae
    • International Journal of Advanced Culture Technology
    • /
    • 제10권2호
    • /
    • pp.252-259
    • /
    • 2022
  • Artificial intelligence is used in fusion with image processing techniques using cameras. Image processing technology is a technology that processes objects in an image received from a camera in real time, and is used in various fields such as security monitoring and medical image analysis. If such image processing reduces the accuracy of recognition, providing incorrect information to medical image analysis, security monitoring, etc. may cause serious problems. Therefore, this paper uses a mixture of YOLOv4-tiny model and image processing algorithm and uses the COCO dataset for learning. The image processing algorithm performs five image processing methods such as normalization, Gaussian distribution, Otsu algorithm, equalization, and gradient operation. For RGB images, three image processing methods are performed: equalization, Gaussian blur, and gamma correction proceed. Among the nine algorithms applied in this paper, the Equalization and Gaussian Blur model showed the highest object detection accuracy of 96%, and the gamma correction (RGB environment) model showed the highest object detection rate of 89% outdoors (daytime). The image binarization model showed the highest object detection rate at 89% outdoors (night).

석면섬유 자동계수를 위한 고효율 현미경법의 영상처리 알고리즘 개선 (Improvement of Image Processing Algorithm of High-Throughput Microscopy for Automated Counting of Asbestos Fibers)

  • 조명옥;윤성희;한화택;김중경
    • 한국가시화정보학회지
    • /
    • 제13권3호
    • /
    • pp.15-19
    • /
    • 2015
  • We developed a high-throughput microscopy (HTM) method which enabled us to replace a conventional phase contrast microscopy (PCM) method that has been used as a standard analytical method for airborne asbestos. We could obtain the concentration of airborne asbestos fibers under detection limit by automated image processing and analysis using HTM method. Here we propose an improved image processing algorithm with variable parameters to enhance the accuracy of the HTM analysis. Since the variable parameters that compensate the difference of the brightness are applied to the individual images in our new image processing method, it is possible to enhance the accuracy of the automatic image analysis method for sample slides with low asbestos concentration that caused errors in binary image processing. We demonstrated that enumeration of fibers by improved image processing algorithm remarkably enhanced the accuracy of HTM analysis in comparison with PCM. The improved HTM method can be a potential alternative to conventional PCM.

증기발생기 유로홈막힘 사진판독 알고리즘 개발 (Development of the S/G TSP Clogging Image Analysis Algorithm)

  • 조남철;김왕배;문찬국
    • 한국압력기기공학회 논문집
    • /
    • 제7권3호
    • /
    • pp.8-14
    • /
    • 2011
  • The clogging of the flow area at the tube support plates(TSPs), especially at the upper TSPs results in the water level oscillation of a steam generator during normal operation. A reduction of the TSP flow area causes to increase in pressure drop within the two-phase flow zone, which destabilizes the boiling flow through the tube bundle. This phenomenon was occasionally observed at a few domestic and foreign nuclear power plants. One of the methods for defining the flow area clogging is visual inspection, which is the most effective inspection method. The results of the visual inspection for TSPs' flow area are clogging images on TSPs' quartrefoil lobes. These images are complexly distorted due to lens aberration and external factors like the distance to a subject and angle etc. In this work, we developed the analysis algorithm for clogging image of the TSP flow area of steam generators. For this purpose, we designed an image verification device applicable to the camera employed in the field for visual inspection and then, we demonstrated the validity of image analysis algorithm by using this device and commercial autoCAD program.

A Versatile Medical Image Enhancement Algorithm Based on Wavelet Transform

  • Sharma, Renu;Jain, Madhu
    • Journal of Information Processing Systems
    • /
    • 제17권6호
    • /
    • pp.1170-1178
    • /
    • 2021
  • This paper proposed a versatile algorithm based on a dual-tree complex wavelet transform for intensifying the visual aspect of medical images. First, the decomposition of the input image into a high sub-band and low-sub-band image is done. Further, to improve the resolution of the resulting image, the high sub-band image is interpolated using Lanczos interpolation. Also, contrast enhancement is performed by singular value decomposition (SVD). Finally, the image reconstruction is achieved by using an inverse wavelet transform. Then, the Gaussian filter will improve the visual quality of the image. We have collected images from the hospital and the internet for quantitative and qualitative analysis. These images act as a reference image for comparing the effectiveness of the proposed algorithm with the existing state-of-the-art. We have divided the proposed algorithm into several stages: preprocessing, contrast enhancement, resolution enhancement, and visual quality enhancement. Both analyses show the proposed algorithm's effectiveness compared to existing methods.