References
- Aas K, Haff IH, and Dimakos XK (2005). Risk estimation using the multivariate normal inverse Gaussian distribution, The Journal of Risk, 8, 39-60.
- Aas K, Czado C, Frigessi A, and Bakken H (2009). Pair-copula constructions of multiple dependence, Insurance: Mathematics and Economics, 44, 182-198. https://doi.org/10.1016/j.insmatheco.2007.02.001
- Barndorff-Nielsen OE (1997). Normal inverse Gaussian distributions and stochastic volatility modelling, Scandinavian Journal of Statistics, 24, 1-13. https://doi.org/10.1111/1467-9469.t01-1-00045
- Barndorff-Nielsen OE, Mikosch T, and Resnick SI (2001). L'evy Processes: Theory and Applications, Springer Science & Business Media, New York.
- Bolviken E and Benth FE (2000). Quantification of risk in Norwegian stocks via the normal inverse Gaussian distribution, In Proceedings of the AFIR 2000 Colloquium, Tromso, Norway, 87-98.
- Charpentier A (2003). Tail distribution and dependence measures, In Proceedings of the 34th ASTIN Conference, Berlin, Germany, 1-25.
- Cherubini U, Mulinacci S, Gobbi F, and Romagnoli S (2011). Dynamic Copula Methods in Finance, John Wiley & Sons, New York.
- Doric D and Doric EN (2011). Return distribution and value at risk estimation for BELEX15, Yugoslav Journal of Operations Research, 21, 103-118. https://doi.org/10.2298/YJOR1101103D
- Eberlein E and Keller U (1995). Hyperbolic distributions in finance, Bernoulli, 1, 281-299. https://doi.org/10.3150/bj/1193667819
- Embrechts P, McNeil A, and Straumann D (2002). Correlation and dependence in risk management: properties and pitfalls, Risk Management: Value at Risk and Beyond, 1, 176-223. https://doi.org/10.1017/CBO9780511615337.008
- Eriksson A, Ghysels E, and Wang F (2009). The normal inverse Gaussian distribution and the pricing of derivatives, The Journal of Derivatives, 16, 23-37. https://doi.org/10.3905/JOD.2009.16.3.023
- Godin F, Mayoral S, and Morales M (2012). Contingent claim pricing using a normal inverse Gaussian probability distortion operator, Journal of Risk and Insurance, 79, 841-866. https://doi.org/10.1111/j.1539-6975.2011.01445.x
- Goncu A and Yang H (2016). Variance-Gamma and normal-inverse Gaussian models: goodness-of-fit to Chinese high-frequency index returns, The North American Journal of Economics and Finance, 36, 279-292. https://doi.org/10.1016/j.najef.2016.02.004
- Hull J and White A (1998). Value at risk when daily changes in market variables are not normally distributed, Journal of Derivatives, 5, 9-19. https://doi.org/10.3905/jod.1998.407998
- Joe H (1997). Multivariate Models and Multivariate Dependence Concepts, CRC Press, Boca Raton.
- Jorion P (2007). Value at Risk: The New Benchmark for Managing Financial Risk (3rd ed), McGraw-Hill, New York.
- Kalemanova A, Schmid B, and Werner R (2007). The normal inverse Gaussian distribution for synthetic CDO pricing, The Journal of Derivatives, 14, 80-94. https://doi.org/10.3905/jod.2007.681815
- Kim T and Song S (2011). Value-at-risk estimation using NIG and VG distribution, Journal of the Korean Data Analysis Society, 13, 1775-1788.
- Kole E, Koedijk K, and Verbeek M (2007). Selecting copulas for risk management, Journal of Banking & Finance, 31, 2405-2423. https://doi.org/10.1016/j.jbankfin.2006.09.010
- Kraus D and Czado C (2017). D-vine copula based quantile regression, Computational Statistics & Data Analysis, 110, 1-18. https://doi.org/10.1016/j.csda.2016.12.009
- Kupiec P (1995). Techniques for verifying the accuracy of risk measurement models, The Journal of Derivatives, 3, 73-84. https://doi.org/10.3905/jod.1995.407942
- Low RKY, Alcock J, Faff R, and Brailsford T (2013). Canonical vine copulas in the context of modern portfolio management: Are they worth it?, Journal of Banking & Finance, 37, 3085-3099. https://doi.org/10.1016/j.jbankfin.2013.02.036
- Mabitsela L, Mare E, and Kufakunesu R (2015). Quantification of VaR: A note on VaR valuation in the South African equity market, Journal of Risk and Financial Management, 8, 103-126. https://doi.org/10.3390/jrfm8010103
- Madan DB, Carr PP, and Chang EC (1998). The variance gamma process and option pricing, Review of Finance, 2, 79-105. https://doi.org/10.1023/A:1009703431535
- Markowitz H (1952). Portfolio selection, The Journal of Finance, 7, 77-91. https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
- Okhrin O and Ristig A (2014). Hierarchical Archimedean copulae: the HAC package, Journal of Statistical Software, 58, 1-20.
- Okhrin O and Tetereva A (2017). The realized hierarchical archimedean copula in risk Modelling, Econometrics, 5, 1-31. https://doi.org/10.3390/econometrics5010001
- Schoutens W (2003). Levy Processes in Finance: Pricing Financial Derivatives, John Wiley & Sons, New York.
- Sklar A (1959). Fonctions de repartition an dimensions et leurs marges, Publications de l'Institut Statistique de l'Universite de Paris, 8, 229-231.
- Trivedi PK and Zimmer DM (2007). Copula modeling: an introduction for practitioners, Foundations and Trends in Econometrics, 1, 1-111. https://doi.org/10.1561/0800000005
- Venkataraman S (1997). Value at risk for a mixture of normal distributions: the use of quasi-Bayesian estimation techniques, Economic Perspectives-Federal Reserve Bank of Chicago, 21, 2-13.
- Weibel M, Breymann W, and Luthi D (2020). ghyp: A package on generalized hyperbolic distributions, Manual for R Package ghyp.
- Wilhelmsson A (2009). Value at Risk with time varying variance, skewness and kurtosis-the NIG-ACD model, The Econometrics Journal, 12, 82-104. https://doi.org/10.1111/j.1368-423X.2008.00277.x
- Wu F, Valdez E, and Sherris M (2007). Simulating from exchangeable Archimedean copulas, Communications in Statistics-Simulation and Computation, 36, 1019-1034. https://doi.org/10.1080/03610910701539781