• Title/Summary/Keyword: portfolio returns

Search Result 111, Processing Time 0.026 seconds

Investment Performance of Markowitz's Portfolio Selection Model over the Accuracy of the Input Parameters in the Korean Stock Market (한국 주식시장에서 마코위츠 포트폴리오 선정 모형의 입력 변수의 정확도에 따른 투자 성과 연구)

  • Kim, Hongseon;Jung, Jongbin;Kim, Seongmoon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.38 no.4
    • /
    • pp.35-52
    • /
    • 2013
  • Markowitz's portfolio selection model is used to construct an optimal portfolio which has minimum variance, while satisfying a minimum required expected return. The model uses estimators based on analysis of historical data to estimate the returns, standard deviations, and correlation coefficients of individual stocks being considered for investment. However, due to the inaccuracies involved in estimations, the true optimality of a portfolio constructed using the model is questionable. To investigate the effect of estimation inaccuracy on actual portfolio performance, we study the changes in a portfolio's realized return and standard deviation as the accuracy of the estimations for each stock's return, standard deviation, and correlation coefficient is increased. Furthermore, we empirically analyze the portfolio's performance by comparing it with the performance of active mutual funds that are being traded in the Korean stock market and the KOSPI benchmark index, in terms of portfolio returns, standard deviations of returns, and Sharpe ratios. Our results suggest that, among the three input parameters, the accuracy of the estimated returns of individual stocks has the largest effect on performance, while the accuracy of the estimates of the standard deviation of each stock's returns and the correlation coefficient between different stocks have smaller effects. In addition, it is shown that even a small increase in the accuracy of the estimated return of individual stocks improves the portfolio's performance substantially, suggesting that Markowitz's model can be more effectively applied in real-life investments with just an incremental effort to increase estimation accuracy.

A Study about Measurement Model of Long Term Performance in Stock Split (주식분할의 장기성과 측정 모델에 대한 연구)

  • Shin, Yeon-Soo
    • The Journal of Information Technology
    • /
    • v.9 no.3
    • /
    • pp.77-89
    • /
    • 2006
  • The event study analyzes returns around event date at a time. Event study provides estimation periods and cumulative returns. Stock split announcements are generally associated with positive abnormal returns. It is important to investigate the responses of stocks to new information contained in the announcements of stock splits. So It is important to study the long term performance in the case of Stock Split. This Study forced to two approach method in evaluating the performance, the event time portfolio approach and calendar time portfolio approach. The event time portfolio approach exists the CAR model, BHAR model and WR model. And the calendar time portfolio approach has the 3 factor model, 4 factor model, CTAR model, and RATS model.

  • PDF

An Application of the Smart Beta Portfolio Model: An Empirical Study in Indonesia Stock Exchange

  • WASPADA, Ika Putera;SALIM, Dwi Fitrizal;FARISKA, Putri
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.9
    • /
    • pp.45-52
    • /
    • 2021
  • Stock price fluctuations affect investor returns, particularly, in this pandemic situation that has triggered stock market shocks. As a result of this situation, investors prefer to move their money into a safer portfolio. Therefore, in this study, we approach an efficient portfolio model using smart beta and combining others to obtain a fast method to predict investment stock returns. Smart beta is a method to selects stocks that will enter a portfolio quickly and concisely by considering the level of return and risk that has been set according to the ability of investors. A smart beta portfolio is efficient because it tracks with an underlying index and is optimized using the same techniques that active portfolio managers utilize. Using the logistic regression method and the data of 100 low volatility stocks listed on the Indonesia stock exchange from 2009-2019, an efficient portfolio model was made. It can be concluded that an efficient portfolio is formed by a group of stocks that are aggressive and actively traded to produce optimal returns at a certain level of risk in the long-term period. And also, the portfolio selection model generated using the smart beta, beta, alpha, and stock variants is a simple and fast model in predicting the rate of return with an adjusted risk level so that investors can anticipate risks and minimize errors in stock selection.

Stock Price Prediction and Portfolio Selection Using Artificial Intelligence

  • Sandeep Patalay;Madhusudhan Rao Bandlamudi
    • Asia pacific journal of information systems
    • /
    • v.30 no.1
    • /
    • pp.31-52
    • /
    • 2020
  • Stock markets are popular investment avenues to people who plan to receive premium returns compared to other financial instruments, but they are highly volatile and risky due to the complex financial dynamics and poor understanding of the market forces involved in the price determination. A system that can forecast, predict the stock prices and automatically create a portfolio of top performing stocks is of great value to individual investors who do not have sufficient knowledge to understand the complex dynamics involved in evaluating and predicting stock prices. In this paper the authors propose a Stock prediction, Portfolio Generation and Selection model based on Machine learning algorithms, Artificial neural networks (ANNs) are used for stock price prediction, Mathematical and Statistical techniques are used for Portfolio generation and Un-Supervised Machine learning based on K-Means Clustering algorithms are used for Portfolio Evaluation and Selection which take in to account the Portfolio Return and Risk in to consideration. The model presented here is limited to predicting stock prices on a long term basis as the inputs to the model are based on fundamental attributes and intrinsic value of the stock. The results of this study are quite encouraging as the stock prediction models are able predict stock prices at least a financial quarter in advance with an accuracy of around 90 percent and the portfolio selection classifiers are giving returns in excess of average market returns.

Value at Risk of portfolios using copulas

  • Byun, Kiwoong;Song, Seongjoo
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.1
    • /
    • pp.59-79
    • /
    • 2021
  • Value at Risk (VaR) is one of the most common risk management tools in finance. Since a portfolio of several assets, rather than one asset portfolio, is advantageous in the risk diversification for investment, VaR for a portfolio of two or more assets is often used. In such cases, multivariate distributions of asset returns are considered to calculate VaR of the corresponding portfolio. Copulas are one way of generating a multivariate distribution by identifying the dependence structure of asset returns while allowing many different marginal distributions. However, they are used mainly for bivariate distributions and are not widely used in modeling joint distributions for many variables in finance. In this study, we would like to examine the performance of various copulas for high dimensional data and several different dependence structures. This paper compares copulas such as elliptical, vine, and hierarchical copulas in computing the VaR of portfolios to find appropriate copula functions in various dependence structures among asset return distributions. In the simulation studies under various dependence structures and real data analysis, the hierarchical Clayton copula shows the best performance in the VaR calculation using four assets. For marginal distributions of single asset returns, normal inverse Gaussian distribution was used to model asset return distributions, which are generally high-peaked and heavy-tailed.

Gross Profitability Premium in the Korean Stock Market and Its Implication for the Fund Distribution Industry (한국 주식시장에서 총수익성 프리미엄에 관한 분석 및 펀드 유통산업에 주는 시사점)

  • Yoon, Bo-Hyun;Liu, Won-Suk
    • Journal of Distribution Science
    • /
    • v.13 no.9
    • /
    • pp.37-45
    • /
    • 2015
  • Purpose - This paper's aim is to investigate whether or not gross profitability explains the cross-sectional variation of the stock returns in the Korean stock market. Gross profitability is an alternative profitability measure proposed by Novy-Marx in 2013 to predict cross-sectional variation of stock returns in the US. He shows that the gross profitability adds explanatory power to the Fama-French 3 factor model. Interestingly, gross profitability is negatively correlated with the book-to-market ratio. By confirming the gross profitability premium in the Korean stock market, we may provide some implications regarding the well-known value premium. In addition, our empirical results may provide opportunities for the fund distribution industry to promote brand new styles of funds. Research design, data, and methodology - For our empirical analysis, we collect monthly market prices of all the companies listed on the Korea Composite Stock Price Index (KOSPI) of the Korea Exchanges (KRX). Our sample period covers July1994 to December2014. The data from the company financial statementsare provided by the financial information company WISEfn. First, using Fama-Macbeth cross-sectional regression, we investigate the relation between gross profitability and stock return performance. For robustness in analyzing the performance of the gross profitability strategy, we consider value weighted portfolio returns as well as equally weighted portfolio returns. Next, using Fama-French 3 factor models, we examine whether or not the gross profitability strategy generates excess returns when firmsize and the book-to-market ratio are controlled. Finally, we analyze the effect of firm size and the book-to-market ratio on the gross profitability strategy. Results - First, through the Fama-MacBeth cross-sectional regression, we show that gross profitability has almost the same explanatory power as the book-to-market ratio in explaining the cross-sectional variation of the Korean stock market. Second, we find evidence that gross profitability is a statistically significant variable for explaining cross-sectional stock returns when the size and the value effect are controlled. Third, we show that gross profitability, which is positively correlated with stock returns and firm size, is negatively correlated with the book-to-market ratio. From the perspective of portfolio management, our results imply that since the gross profitability strategy is a distinctive growth strategy, value strategies can be improved by hedging with the gross profitability strategy. Conclusions - Our empirical results confirm the existence of a gross profitability premium in the Korean stock market. From the perspective of the fund distribution industry, the gross profitability portfolio is worthy of attention. Since the value strategy portfolio returns are negatively correlated with the gross profitability strategy portfolio returns, by mixing both portfolios, investors could be better off without additional risk. However, the profitable firms are dissimilar from the value firms (high book-to-market ratio firms); therefore, an alternative factor model including gross profitability may help us understand the economic implications of the well-known anomalies such as value premium, momentum, and low volatility. We reserve these topics for future research.

Robo-Advisor Algorithm with Intelligent View Model (지능형 전망모형을 결합한 로보어드바이저 알고리즘)

  • Kim, Sunwoong
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.39-55
    • /
    • 2019
  • Recently banks and large financial institutions have introduced lots of Robo-Advisor products. Robo-Advisor is a Robot to produce the optimal asset allocation portfolio for investors by using the financial engineering algorithms without any human intervention. Since the first introduction in Wall Street in 2008, the market size has grown to 60 billion dollars and is expected to expand to 2,000 billion dollars by 2020. Since Robo-Advisor algorithms suggest asset allocation output to investors, mathematical or statistical asset allocation strategies are applied. Mean variance optimization model developed by Markowitz is the typical asset allocation model. The model is a simple but quite intuitive portfolio strategy. For example, assets are allocated in order to minimize the risk on the portfolio while maximizing the expected return on the portfolio using optimization techniques. Despite its theoretical background, both academics and practitioners find that the standard mean variance optimization portfolio is very sensitive to the expected returns calculated by past price data. Corner solutions are often found to be allocated only to a few assets. The Black-Litterman Optimization model overcomes these problems by choosing a neutral Capital Asset Pricing Model equilibrium point. Implied equilibrium returns of each asset are derived from equilibrium market portfolio through reverse optimization. The Black-Litterman model uses a Bayesian approach to combine the subjective views on the price forecast of one or more assets with implied equilibrium returns, resulting a new estimates of risk and expected returns. These new estimates can produce optimal portfolio by the well-known Markowitz mean-variance optimization algorithm. If the investor does not have any views on his asset classes, the Black-Litterman optimization model produce the same portfolio as the market portfolio. What if the subjective views are incorrect? A survey on reports of stocks performance recommended by securities analysts show very poor results. Therefore the incorrect views combined with implied equilibrium returns may produce very poor portfolio output to the Black-Litterman model users. This paper suggests an objective investor views model based on Support Vector Machines(SVM), which have showed good performance results in stock price forecasting. SVM is a discriminative classifier defined by a separating hyper plane. The linear, radial basis and polynomial kernel functions are used to learn the hyper planes. Input variables for the SVM are returns, standard deviations, Stochastics %K and price parity degree for each asset class. SVM output returns expected stock price movements and their probabilities, which are used as input variables in the intelligent views model. The stock price movements are categorized by three phases; down, neutral and up. The expected stock returns make P matrix and their probability results are used in Q matrix. Implied equilibrium returns vector is combined with the intelligent views matrix, resulting the Black-Litterman optimal portfolio. For comparisons, Markowitz mean-variance optimization model and risk parity model are used. The value weighted market portfolio and equal weighted market portfolio are used as benchmark indexes. We collect the 8 KOSPI 200 sector indexes from January 2008 to December 2018 including 132 monthly index values. Training period is from 2008 to 2015 and testing period is from 2016 to 2018. Our suggested intelligent view model combined with implied equilibrium returns produced the optimal Black-Litterman portfolio. The out of sample period portfolio showed better performance compared with the well-known Markowitz mean-variance optimization portfolio, risk parity portfolio and market portfolio. The total return from 3 year-period Black-Litterman portfolio records 6.4%, which is the highest value. The maximum draw down is -20.8%, which is also the lowest value. Sharpe Ratio shows the highest value, 0.17. It measures the return to risk ratio. Overall, our suggested view model shows the possibility of replacing subjective analysts's views with objective view model for practitioners to apply the Robo-Advisor asset allocation algorithms in the real trading fields.

FC Approach in Portfolio Selection of Tehran's Stock Market

  • Shadkam, Elham
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.1 no.2
    • /
    • pp.31-37
    • /
    • 2014
  • The portfolio selection is one of the most important and vital decisions that a real or legal person, who invests in stock market, should make. The main purpose of this article is the determination of the optimal portfolio with regard to relations among stock returns of companies which are active in Tehran's stock market. For achieving this goal, weekly statistics of company's stocks since Farvardin 1389 until Esfand 1390, has been used. For analyzing statistics and information and examination of stocks of companies which has change in returns, factors analysis approach and clustering analysis has been used (FC approach). With using multivariate analysis and with the aim of reducing the unsystematic risk, a financial portfoliois formed. At last but not least, results of choosing the optimal portfolio rather than randomly choosing a portfolio are given.

Predictability of Overnight Returns on the Cross-sectional Stock Returns (야간수익률의 횡단면 주식수익률에 대한 예측력)

  • Cheon, Yong-Ho
    • Asia-Pacific Journal of Business
    • /
    • v.11 no.4
    • /
    • pp.243-254
    • /
    • 2020
  • Purpose - This paper explores whether overnight returns measured from the last closing price to today's opening price explain the cross-section of stock returns. Design/methodology/approach - This study is conducted using the Korean stock market data from 1998 to 2018, obtained from DataGuide database. The analysis begins with portfolio-level tests, followed by firm-level cross-sectional regressions. Findings - First, when decile portfolios sorted on the daily average of overnight returns in the previous months, the highest decile portfolio exhibits a significant negative risk-adjusted return. This suggests that stocks with higher average overnight returns are temporarily overvalued due to buying pressure from investors. Second, at least 6 months of persistence exists in average overnight returns, which is in line with the results reported by Barber, Odean and Zhu (2009) that investor sentiment persists over several weeks. Finally, Fama-MacBeth cross-sectional regression of expected returns after controlling for a variety of firm characteristic variables such as firm size, book-to-market ratio, market beta, momentum, liquidity, short-term reversal, the slope coefficient for overnight returns remains negative and statistically significant. Research implications or Originality - Overall, the evidence consistently suggests that overnight return is considered as a new priced factor in the cross-section of expected returns. The findings of this paper not only adds to finance literature, but also could be useful to practitioners in making stock investment decision.

The Admissible Multiperiod Mean Variance Portfolio Selection Problem with Cardinality Constraints

  • Zhang, Peng;Li, Bing
    • Industrial Engineering and Management Systems
    • /
    • v.16 no.1
    • /
    • pp.118-128
    • /
    • 2017
  • Uncertain factors in finical markets make the prediction of future returns and risk of asset much difficult. In this paper, a model,assuming the admissible errors on expected returns and risks of assets, assisted in the multiperiod mean variance portfolio selection problem is built. The model considers transaction costs, upper bound on borrowing risk-free asset constraints, cardinality constraints and threshold constraints. Cardinality constraints limit the number of assets to be held in an efficient portfolio. At the same time, threshold constraints limit the amount of capital to be invested in each stock and prevent very small investments in any stock. Because of these limitations, the proposed model is a mix integer dynamic optimization problem with path dependence. The forward dynamic programming method is designed to obtain the optimal portfolio strategy. Finally, to evaluate the model, our result of a meaning example is compared to the terminal wealth under different constraints.