References
- E. J. Benjamin, S. S. Virani, C. W. Callaway, A.M. Chamberlain, A. R. Chang, S. Cheng, et al., Heart disease and stroke statistics-2018 update: A report from the American heart association. Circulation, Vol. 137, No. 12, pp. 67, Jan. 2018.
- R. Avanzato, F. Beritelli, "Automatic ECG Diagnosis Using Convolutional Neural Network", Electronics, Vol. 9, No. 6, pp. 1-14, Jun. 2020.
- P. Zhang, J. Cheng, Y. Zhao, "Classification of ECG Signals Based on LSTM and CNN", Artificial Intelligence and Security, 6th International Conference (ICAIS), pp. 278-289, Sep. 2020.
- S. Singh, S. K. Pandey, U. Pawar, R. R. Janghel, "Classification of ECG Arrhythmia using Recurrent Neural Networks", International Conference on Computational Intelligence and Data Science (ICCIDS ), pp. 1290-1297, May. 2018.
- S. Kiranyaz, T. Ince, and M. Gabbouj, "Real-time patient-specific ECG classification by 1-d convolutional neural networks," IEEE Trans. Biomed. Eng., Vol. 63, No. 3, pp. 664-675, Aug. 2016. https://doi.org/10.1109/TBME.2015.2468589
- Y. H. Hu, S. Palreddy, and W. J. Tompkins, "A patientadaptable ECG beat classifier using a mixture of experts approach," IEEE Trans. Biomed. Eng., Vol. 44, No. 9, pp. 891-900, 1997. https://doi.org/10.1109/10.623058
- T. Ince, S. Kiranyaz, and M. Gabbouj, "A generic and robust system for automated patient-specific classification of electrocardiogram signals," IEEE Trans. Biomed. Eng., Vol. 56, No. 5, pp. 1415-1426, May. 2009. https://doi.org/10.1109/TBME.2009.2013934
- M. R. Azghadi, N. Iannella, S. F. Al-Sarawi, G. Indiveri, et al., "Spike-based synaptic plasticity in silicon: Design, implementation, application, and challenges," Proc. IEEE, Vol. 102, No. 5, pp. 717-737, May 2014.
- N. Qiao and G. Indiveri, "Scaling mixed-signal neuromorphic processors to 28 nm FD-SOI technologies," Proceedings of IEEE Biomed. Circuits and Systems Conference (BioCAS), pp. 552-555, Aug. 2016.
- A. Amirshahi and M. Hashemi, "Ultra Low-Power and Real-time ECG Classification Based on STDP and R-STDP Neural Networks for Wearable Devices", IEEE Trans Biomed Circuits Syst (TBioCAS), pp. 1-8, Dec. 2019.
- Z. Yan, J. Zhou, W.Wong, "Energy efficient ECG classification with spiking neural network", Biomed Signal Process Control, Vol. 63, pp. 1-7, Aug. 2020.
- M. Kachuee, S. Fazeli, and M. Sarrafzadeh. ECG heartbeat classification: A deep transferable representation. Proceedings - IEEE International Conference on Healthcare Informatics,( ICHI), pp. 443-444, Apr. 2018.
- A. Y. Hannun, P. Rajpurkar, M. Haghpanahi, et. al., Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nature medicine, Vol. 25, No. 1, pp. 65, Jan. 2019. https://doi.org/10.1038/s41591-018-0268-3
- B. Grossfeld, Article: "Deep learning vs machine learning: a simple way to understand the difference", Jan. 2020.
- D. Soni, "Spiking Neural Networks, the Next Generation of Machine Learning", Towards Data Science Blog, Jan. 2018.
- C. Nicholson, "Spiking Neural Networks", Pathmind, A.I.Wiki.
- P. U. Diehl and M. Cook, "Unsupervised learning of digit recognition using spike-timing-dependent plastcity", Frontier in Computational Neuroscience, Aug. 2015.
- S. R. Kulkarni, B. Rajendran, "Spiking Neural networks for handwritten digit recognition-Supervised learning an network optimization", ELSEVIER: Neural Networks, Vol. 103, pp. 118-127, Jul. 2018. https://doi.org/10.1016/j.neunet.2018.03.019
- M. Courbariaux, et al., "Binarized Neural Network: Training Neural Networks with Weights and Activations Constrained to +1 or -1", Machine Learning, pp. 1-11, Mar. 2016.
- ECG Dataset : www.physionet.org (retrieved on Dec.17, 2020