References
- D. B. P. Quintanilha et al., "Automatic consumption reading on electromechanical meters using HoG and SVM," 7th Latin American Conference on Networked and Electronic Media (LACNEM), Valparaiso, pp. 57-61, 2017.
- R. Ebrahimzadeh, M. Jampour, "Efficient Handwritten Digit Recognition based on Histogram of Oriented Gradients and SVM", Int. J. of Comput. Appl., Vol 104, pp. 10-13, Oct. 2014.
- U. B. Karanje, R. Dagade, S. Shiravale, "Maximally Stable Extremal Region Approach for Accurate Text Detection in Natural Scene Images", Int. J of Sci. Develop. and Res., Vol. 1, Issue 11, Nov. 2016.
- B. Yu and H. Wan, "Chinese Text Detection and Recognition in Natural Scene Using HOG and SVM", 6th International Conference on Information Technology for Manufacturing Systems, 2017.
- I. Gallo, A. Zamberletti, L. Noce, "Robust Angle Invariant GAS meter reading", International Conference on Digital Image Computing: Techniques and Applications, Oct. 2015.
- M. Cerman, G. Shalunts, D. Albertini. "A Mobile Recognition System for Analog Energy Meter Scanning". Advances in Visual Computing. ISVC Springer, Cham. Lecture Notes in Computer Science, Vol. 10072, pp. 247-256, 2016.
- C. Son, S. Park, J. Lee, J. Paik, "Deep Learning-based Number Detection and Recognition for Gas Meter Reading". IEIE Trans. on Smart Processing & Computing, Vol. 8, No. 5, pp. 367-372, Oct. 2019. https://doi.org/10.5573/IEIESPC.2019.8.5.367
- M. Waqar, M. A. Waris, E. Rashid, N. Nida, S. Nawaz and M. H. Yousaf, "Meter Digit Recognition Via Faster RCNN". International Conference on Robotics and Automation in Industry (ICRAI), Rawalpindi, Pakistan, pp. 1-5, Mar. 2019.
- R. Laroca, V. Barroso, M. A. Diniz, G. R. Goncalves, W. R. Schwartz, D. Menotti, "Convolutional neural networks for automatic meter reading," J. Electron. Imag. Vol. 28, No. 1, pp. 1-38, 5 Feb. 2019.
- A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam. "Mobilenets: Efficient convolutional neural networks for mobile vision applications". Computer Vision and Pattern Recognition (CVPR), Vol. 1, pp. 1-9, Apr.2017.
- F. Chollet, "Xception: Deep learning with depthwise separable convolutions". Computer Vision and Pattern Recognition (CVPR), Vol. 3, pp. 1-8, Apr. 2017.
- M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L. Chen, "MobileNetV2: Inverted Residuals and Linear Bottlenecks". Computer Vision and Pattern Recognition (CVPR), Vol. 4, pp. 1-14, Mar. 2019.