DOI QR코드

DOI QR Code

GREEN FUNCTIONS FOR FLOW VELOCITY OF STATIONARY STOKES SYSTEMS

  • Choi, Jongkeun (Department of Mathematics Education, Pusan National University)
  • Received : 2021.01.16
  • Accepted : 2021.01.25
  • Published : 2021.01.31

Abstract

We establish existence and uniqueness of Green functions for flow velocity of stationary Stokes systems, under a continuity assumption of weak solutions to the system, in a bounded domain such that the divergence equation is solvable there. We also obtain pointwise bounds of the Green functions.

Keywords

References

  1. G. Acosta, R. G. Duran, and M. A. Muschietti, Solutions of the divergence operator on John domains, Adv. Math., 206(2):373-401, 2006. https://doi.org/10.1016/j.aim.2005.09.004
  2. J. Choi, H. Dong, and D. Kim, Green functions of conormal derivative problems for Stokes system, J. Math. Fluid Mech., 20(4):1745-1769, 2018. https://doi.org/10.1007/s00021-018-0387-0
  3. J. Choi and D. Kim, Estimates for Green functions of Stokes systems in two dimensional domains, J. Math. Anal. Appl., 471(1-2):102-125, 2019. https://doi.org/10.1016/j.jmaa.2018.10.067
  4. J. Choi and S. Kim, Neumann functions for second order elliptic systems with measurable coefficients, Trans. Amer. Math. Soc., 365(12):6283-6307, 2013. https://doi.org/10.1090/S0002-9947-2013-05886-2
  5. J. Choi and S. Kim, Green's functions for elliptic and parabolic systems with Robin-type boundary conditions, J. Funct. Anal., 267(9):3205-3261, 2014. https://doi.org/10.1016/j.jfa.2014.08.011
  6. J. Choi and K.-A. Lee, The Green function for the Stokes system with measurable coefficients, Commun. Pure Appl. Anal., 16(6):1989-2022, 2017. https://doi.org/10.3934/cpaa.2017098
  7. J. Choi and M. Yang. Fundamental solutions for stationary Stokes systems with measurable coefficients, J. Differential Equations, 263(7):3854-3893, 2017. https://doi.org/10.1016/j.jde.2017.05.005
  8. H. Dong and D. Kim, Weighted Lq-estimates for stationary Stokes system with partially BMO coefficients, J. Differential Equations, 264(7):4603-4649, 2018. https://doi.org/10.1016/j.jde.2017.12.011
  9. H. Dong and D. Kim, Lq-estimates for stationary Stokes system with coefficients measurable in one direction, Bull. Math. Sci., 9(1):1950004, 30, 2019. https://doi.org/10.1142/s1664360719500048
  10. H. Dong and S. Kim, Green's matrices of second order elliptic systems with measurable coefficients in two dimensional domains, Trans. Amer. Math. Soc., 361(6):3303-3323, 2009. https://doi.org/10.1090/S0002-9947-09-04805-3
  11. M. Giaquinta, Introduction to regularity theory for nonlinear elliptic systems, Lectures in Mathematics ETH Zurich. Birkhauser Verlag, Basel, 1993.
  12. S. Hofmann and S. Kim. The Green function estimates for strongly elliptic systems of second order, Manuscripta math., 124(2):139-172, 2007. https://doi.org/10.1007/s00229-007-0107-1
  13. K. Kang and S. Kim. Global pointwise estimates for Green's matrix of second order elliptic systems, J. Differential Equations, 249(11):2643-2662, 2010. https://doi.org/10.1016/j.jde.2010.05.017