References
- Adamowski, J., and S. O. Prasher, 2012. Comparison of machine learning methods for runoff forecasting in mountainous watersheds with limited data. Journal of Water and Land Development 17(1): 89-97. doi:10.2478/v10025-012-0038-4.
- Aggarwal, C. C., 2018. Neural networks and deep learning: Springer.
- Chollet, F., 2015. Keras. https://keras.io. Accessed 20Jul. 2020.
- Chollet, F., 2017. Deep Learning with Python: Manning.
- Clevert, D. A., T. Unterthiner, and S. Hochreiter, 2016. Fast and accurate deep network learning by exponential linear units (ELUs). arXiv preprint. arXiv:1511.07289.
- Dawson, C. W., and R. Wilby, 1998. An artificial neural network approach to rainfall-runoff modeling. Hydrological Sciences 43(1): 47-66. doi:10.1080/02626669809492102.
- Donate, J. P., C. Paulo, G. S. German, and S. M. Araceli, 2013. Time series forecasting using a weighted crossvalidation evolutionary artificial neural network ensemble. Neurocompution 109: 27-32. doi:10.1016/j.neucom.2012.02.053.
- Glorot, X., and Y. Bengio, 2010. Understanding the difficulty of training deep feedforward neural networks. In Proc. Thirteenth International Conference on Artificial Intelligence and Statistics: 249-256.
- Goodfellow, I., Y. Bengio, and A. Courville, 2016. Deep Learning: MIT press.
- Hsu, K. N., H. V. Gupta, and S. sorooshian, 1995. Artificial neural network modeling of the rainfall-runoff process. Water Resources Research 31(10): 2517-2530. doi:10.1029/95WR01955.
- Hu, C., Q. Wu, H. Li, S. Jian, N. Li, and Z. Lou, 2018. Deep learning with a long short-term memory networks approach for rainfall-runoff simulation. Water 10(11): 1543. doi:10.3390/w10111543.
- Jeung, M., S. Baek, J. Beom, K. H. Cho, Y. Her, and K. Yoon, 2019. Evaluation of random forest and regression tree methods for estimation of mass first flush ratio in urban catchments. Journal of Hydrology 575: 1099-1110. doi:10.1016/j.jhydrol.2019.05.079.
- Kang, M. S., and S. W. Park, 2003, Short-term flood forecasting using artificial neural networks. Journal of The Korean Society of Agricultural Engineers 45(2): 45-57 (in Korean).
- Kang, M. S., M. G. Kang, S. W. Park, J. J. Lee, and R. H. Yoo, 2006. Application of grey model and artificial neural networks to flood forecasting. Journal of the American Water Resources Association 42(2): 473-486. https://doi.org/10.1111/j.1752-1688.2006.tb03851.x
- Kim, J. H., 1993. A study on hydrologic forecasting of stream flows based on artificial neural network. Ph.D. diss., Incheon, Republic of Korea: Inha University (in Korean).
- Kingma, D. P., and J. Ba, 2014. Adam: A method for stochastic optimization. arXiv preprint. arXiv:1412.6980.
- Krizhevsky, A., I. Sutskever, and G. E. Hinton, 2017. Imagenet classification with deep convolutional neural networks. Communications of the ACM 60(6): 84-90. doi:10.1145/3065386.
- Lau, M. M., and K. H. Lim, 2017. Investigation of activation functions in deep belief network. 2017 2nd International Conference on Control and Robotics Engineering (ICCRE): 201-206. doi:10.1109/ICCRE.2017.7935070.
- Lee, G. S., S. C. Park, H. M. Lee, and Y. H. Jin, 2000. The prediction of runoff using artificial neural network in the Young-san River. Journal of Korea Water Resources Association 33(1): 251-256 (in Korean).
- Marina, C., P. Andreussi, and A. Soldati, 1999. River flood forecasting with a neural network model. Water Resources Research 35(4): 1191-1197. doi:10.1029/1998WR900086.
- Ministry of the Interior and Safety, 2018. Statistical yearbook of natural disaster (in Korean).
- Moriasi, D. N., M. W. Gitau, N. Pai, and P. Daggupati, 2015. Hydrologic and water quality models: performance measures and evaluation criteria. Transactions of the ASABE 58(6): 1763-1785. doi:10.13031/trans.58.10715.
- Sarkar, A., and R. Kumar, 2012. Artificial neural networks for event based rainfall-runoff modeling. Journal of Water Resource and Protection 4(10): 891. doi:10.4236/jwarp.2012.410105.
- Solomatine, D., L. M. See, and R. J. Abrahart, 2009. Data-driven modelling: concepts, approaches and experiences. In Practical Hydroinformatics: 17-30.
- Song, J. H., Y. Her, K. Suh, M. S. Kang, and H. Kim, 2019. Regionalization of a Rainfall-Runoff Model: Limitations and Potentials. Water 11(11): 2257. doi:10.3390/w11112257.
- Xu, B., N. Wang, T. Chen, and M. Li, 2015. Empirical evaluation of rectified activations in convolutional network. arXiv preprint. arXiv:1505.00853.
- Young, C. C., W. C. Liu, and M. C. Wu, 2017. A physically based and machine learning hybrid approach for accurate rainfall-runoff modeling during extreme typhoon events. Applied Soft Computing 53: 205-216. doi:10.1016/j.asoc.2016.12.052.
- Zealnad, C. M., D. H. Burn, and S. P. Simonovic, 1999. Short term stream flow forecasting using artificial neural networks. Journal of Hydrology 214: 32-48. doi:10.1016/S0022-1694(98)00242-X.