References
- Bauer, M.E., 1985. Spectral inputs to crop identification and condition assessment. Proc. IEEE, 73, 1071-1085. https://doi.org/10.1109/PROC.1985.13238
- Brewster, C.C., Allen, J.C., Kopp, D.D., 1999. IPM from space: Using satellite imagery to construct regional crop maps for studying crop-insect interaction. Am. Entomol., 45, 105-17. https://doi.org/10.1093/ae/45.2.105
- Carroll, M.W., Glaser, J.A., Hellmich, R.L., Hunt, T.E., Sappington, T.W., Calvin, D., Copenhaver, K., Fridgen, J., 2008. Use of spectral vegetation indices derived from airborne hyperspectral imagery for detection of European corn borer infestation in Iowa corn plots. J. Econ. Entomol., 101, 1614-1623. https://doi.org/10.1603/0022-0493(2008)101[1614:UOSVID]2.0.CO;2
- Chapman, R.F., 1999. The Insects: structure and function, 4th edition. Cambridge University Press, Cambridge.
- Clevers, J.G.P.W., 1999. The use of imaging spectrometry for agricultural applications. ISPRS J. Photogramm., 54, 299-304. https://doi.org/10.1016/S0924-2716(99)00033-7
- Curran, P.J., 1985. Aerial photography for the assessment of crop condition: a review. Appl. Geogr., 5, 347-360. https://doi.org/10.1016/0143-6228(85)90012-8
- Felsot, A.S., Unsworth, J.B., Linders, J.B., Roberts, G., Rautman, D., Harris, C., Carazo, E., 2010. Agrochemical spray drift; assessment and mitigation - A review. J. Environ. Sci. Health Part B, 46, 1-23. https://doi.org/10.1080/03601234.2010.515161
- Filho, F.H., Heldens, W.B., Kong, Z., de Lange, E.S., 2020. Drones: Innovative technology for use in precision pest management. J. Econ. Entomol., 113, 1-25. https://doi.org/10.1093/jee/toz268
- Fitzgerald, G.J., Maas, S.J., Detar, W.R., 2004. Spider mite detection and canopy component mapping in cotton using hyperspectral imagery and spectral mixture analysis. Prec. Agric., 5, 275-289. https://doi.org/10.1023/B:PRAG.0000032766.88787.5f
- Hasan, R.I., Yusuf, S.M., Alzubaidi, L., 2020. Review of the state of the art of deep learning for plant diseases: a broad analysis and discussion. Plants, 9, 1302. https://doi.org/10.3390/plants9101302
- Hastie, T., Tibshirani, R., Friedman, J., 2009. Overview of supervised learning, in: Hastie, T., Tibshirani, R., Friedman, J. (Eds), The elements of statistical learning, Springer, New York, pp. 9-41.
- Heidary, M., Douzals, J.P., Sinfort, C., Vallet, A., 2014. Influence of spray characteristics on potential spray drift of field crop sprayers: a literature review. Crop Prot., 63, 120-130. https://doi.org/10.1016/j.cropro.2014.05.006
- Herren, H.R., Bird, T.J., Nadel, D.J., 1987. Technology for automated aerial release of natural enemies of the cassava mealybug and cassava green mite. Int. J. Trop. Insect Sci., 8, 883-885. https://doi.org/10.1017/S1742758400023122
- Jensen, R.R., 1983. Biophysical remote sensing. Ann. Assoc. Am. Geogr., 73, 111-132. https://doi.org/10.1111/j.1467-8306.1983.tb01399.x
- Kim, J., Huebner, C., Reardon, R., Park, Y.-L., 2021. Spatiallytargeted biological control of mile-a-minute weed using Rhinoncomimus latipes (Coleoptera: Curculionidae) and an unmanned aircraft system. J. Econ. Entomol., in press.
- Mogili, U.R., Deepak, B.B.V.L., 2018. Review on application of drone systems in precision agriculture. Proc. Comp. Sci., 133, 502-509. https://doi.org/10.1016/j.procs.2018.07.063
- Moran, M.S., Inoue, Y., Barnes, E.M., 1997. Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sens. Environ., 61, 319-346. https://doi.org/10.1016/S0034-4257(97)00045-X
- NGAC, 2016. Emerging technologies and the geospatial landscape. National Geospatial Advisory Committee, U.S. Department of Interior, Washington, D.C..
- Park, Y.-L., Gururajan, S. Thistle, H., Chandran, R., Reardon, R., 2018. Aerial release of Rhinoncomimus latipes (Coleoptera: Curculionidae) to control Persicaria perfoliata (Polygonaceae) using an unmanned aerial system. Pest Manag. Sci., 74, 141-148. https://doi.org/10.1002/ps.4670
- Park, Y.-L., Krell, R.K., Carroll, M., 2007. Theory, technology, and practice of site-specific insect pest management. J. Asia-Pac. Entomol., 10, 89-101. https://doi.org/10.1016/S1226-8615(08)60337-4
- Park, Y.-L., Tollefson, J.J., 2005. Spatial prediction of corn rootworm (Coleoptera: Chrysomelidae) adult emergence in Iowa cornfields. J. Econ. Entomol., 98, 121-128. https://doi.org/10.1603/0022-0493-98.1.121
- Roosjen, P.P., Kellenberger, B., Kooistra, L., Green, D.R., Fahrentrapp, J., 2020. Deep learning for automated detection of Drosophila suzukii: potential for UAV‐based monitoring. Pest Manag. Sci., 76, 2994-3002. https://doi.org/10.1002/ps.5845
- Rosenthal, G., 2017. PPQ explores the tantalizing promise of unmanned air- craft systems. USDA APHIS. from https://www.aphis.usda.gov/aphis/ourfocus/planthealth/ppq-program-overview/plant-protection-today/articles/unmanned-aircraft-systems (accessed on 15 February, 2020).
- Russell, S., Norvig, P., 2020. Artificial Intelligence: A Modern Approach, 4th edition. Pearson, London.
- Rustia, D.J.A., Chao, J.J., Chiu, L.Y., Wu, Y.F., Chung, J.Y., Hsu, J.C., Lin, T.T., 2021. Automatic greenhouse insect pest detection and recognition based on a cascaded deep learning classification method. J. Appl. Entomol., in press.
- Taiz, L., Zeiger, E., 2006. Plant physiology, 4th edition. Sinauer Associates, Inc., Sunderland, MA.
- Wang, A., Zhang, W., Wei, X., 2019. A review on weed detection using ground-based machine vision and image processing techniques. Comp. Electron. Agric., 158, 226-240. https://doi.org/10.1016/j.compag.2019.02.005
- Yang, Z., Rao, M.N., Elliott, N.C., Kindler, S.D., Popham, T.W., 2005. Using ground-based multispectral radiometry to detect stress in wheat caused by greenbug (Homoptera: Aphididae) infestation. Comp. Electron. Agric., 47, 121-135. https://doi.org/10.1016/j.compag.2004.11.018
- Zhang, J., Huang, Y., Pu, R., Gonzalez-Moreno, P., Yuan, L., Wu, K., Huang, W., 2019. Monitoring plant diseases and pests through remote sensing technology: a review. Comp. Electron. Agric., 165, 104943. https://doi.org/10.1016/j.compag.2019.104943