DOI QR코드

DOI QR Code

Pollination Effect and Nesting Behavior of Osmia cornifrons on 'Hongro', Early and 'Fuji', Late-season Apple Cultivars

중생종 '홍로'와 만생종 '후지'사과에서 머리뿔가위벌(Osmia cornifrons)의 영소활동 특성과 화분매개효과

  • Lee, Kyeong Yong (Industrial Insect Division, Department of Agricultural Biology, National Institute of Agricultural Sciences, RDA) ;
  • Lee, Jung Ae (Yeongju Agricultural Technology Center) ;
  • Yoon, Hyung Ju (Industrial Insect Division, Department of Agricultural Biology, National Institute of Agricultural Sciences, RDA)
  • 이경용 (농촌진흥청 국립농업과학원 농업생물부 곤충산업과) ;
  • 이정애 (영주시농업기술센터 기술지원과) ;
  • 윤형주 (농촌진흥청 국립농업과학원 농업생물부 곤충산업과)
  • Received : 2021.02.08
  • Accepted : 2021.02.25
  • Published : 2021.03.01

Abstract

In order to use Osmia cornifrons more effectively in apples, we investigated the pollination effect and nesting activity of O. cornifrons on 'Hongro', the middle-season cultivar, and 'Fuji', the late-season cultivar. There was a significant difference in the nesting activity and pollination effect of O. cornifrons depending on the apple cultivar. The nesting activity, rate of trap nesting, and reproduction in 'Fuji' were 2.5, 1.5, and 3.8 times greater than in 'Hongro', respectively. The pollination effect according to cultivar 'Fuji' was 1.6 times greater than that of 'Hongro' in the central fruit set. In terms of the quality of fruit, the asymmetry index of 'Fuji' was 2.5 times lower than that of 'Hongro', and the number of apple seeds of 'Fuji' was 1.9 times greater than that of 'Hongro'. The main reason for this result was the air temperature. The activity of O. cornifrons was most affected by air temperature (R2 = 0.578). It is expected that the nesting activity and pollination effect are great in 'Fuji' (17.4-24.1℃) when the temperature during the blooming period is higher than that of 'Hongro' (12.5-20.2℃). Our study provides important information on stable apple production for apple cultivators, and can be used as an evidence for changes in flora and insect fauna caused by climate change.

머리뿔가위벌을 사과에 더욱 효과적으로 사용하기 위하여 중생종 '홍로'와 만생종 '후지'에서 머리뿔가위벌의 영소활동과 화분매개효과를 조사하였다. 그 결과, '후지'에서의 영소활동이 '홍로'보다 2.5배 많았다. 영소율과 증식률에서 '후지'가 '홍로' 보다 각각 1.5배, 3.8배 높았다. 품종에 따른 화분매개효과를 조사한 결과, 중심화결실률에서 '후지'가 '홍로'보다 1.6배 높았다. 과실의 품질에서 사축과율은 '후지'가 '홍로'보다 2.5배 낮았고, 사과종자의 수는 1.9배 많았다. 이에 대한 원인을 밝히기 위해 개화기 기상환경과 머리뿔가위벌의 활동량에 대한 상관관계를 분석한 결과, 머리뿔가위벌의 활동에 영향을 미치는 주된 요소는 온도로 나타났다 (R2 = 0.578). '후지'(평균 17.4 ~ 최고 24.1℃)의 개화기 기온은 '홍로'(평균 12.5 ~ 최고 20.2℃)보다 4 ~ 5℃ 높았기 때문에 '후지'에서 영소활동과 화분매개효과가 '홍로'보다 큰 것으로 생각된다. 따라서 조생종 '홍로'에서는 머리뿔가위벌보다 기상환경에 영향을 적게받는 뒤영벌과 같은 화분매개곤충을 사용하는 것이 권장되며, 만생종 '후지'에서는 머리뿔가위벌의 사용이 가능할 것으로 판단된다. 본 연구는 사과 재배 농가에게 사과의 안정적인 생산을 위한 중요한 정보로 사용될 수 있다. 아울러 기후변화에 인하여 머리뿔가위벌의 화분매개활동이나 증식률이 변할 수 있다는 결론은 식생과 곤충상에 변화에 대한 근거로 활용할 수 있을 것이다.

Keywords

References

  1. Alston, F.H., 1996. Incompatibility alleles and apple pollination. Acta. Hort. 423, 119-124. https://doi.org/10.17660/actahortic.1996.423.15
  2. Batra, S.W.T., 1982. The hornfaced bee for efficient pollination of small farm orchards. in Kerr, W.H., Knutson, L.V. (Eds.), Research for small farms, USDA Miscellaneous Publication, Washington, D.C., pp. 116-120.
  3. Bosch, J., Kemp, W.P., 1999. Exceptional cherry production in an orchard pollinated with blue orchard bees. Bee World 80, 163-173. https://doi.org/10.1080/0005772X.1999.11099452
  4. Bosch, J., Kemp, W.P., 2000. Development and emergence of the orchard pollinator, Osmia lignaria (Hymenoptera: Megachilidae). Environ. Entomol. 29, 8-13. https://doi.org/10.1603/0046-225X-29.1.8
  5. Bosch, J., Kemp, W.P., 2001. How to manage the blue orchard bee, Osmia lignaria, as an orchard pollinator. Sustainable Agriculture Network, Washington D.C.
  6. Bosch, J., Kemp, W.P., Peterson, S.S., 2000. Management of Osmia lignaria (Hymenoptera: Megachilidae) populations for almond pollination: methods to advance bee emergence Environ. Entomol. 29, 874-883. https://doi.org/10.1603/0046-225x-29.5.874
  7. Bosch, J., Kemp, W.P., Trostle, G.E., 2006. Bee population returns and cherry yields in an orchard pollinated with Osmia lignaria (Hymenoptera: Megachilidae). J. Econ. Entomol. 99, 408-413. https://doi.org/10.1603/0022-0493-99.2.408
  8. Cane, J.H., 2016. Adult pollen diet essential for egg maturation by a solitary Osmia bee. J. Insect. Physiol. 95, 105-109. https://doi.org/10.1016/j.jinsphys.2016.09.011
  9. Cane, J.H., Dobson, H.E., Boyer, B., 2017. Timing and size of daily pollen meals eaten by adult females of a solitary bee (Nomia melanderi)(Apiformes: Halictidae). Apidologie 48, 17-30. https://doi.org/10.1007/s13592-016-0444-8
  10. Fliszkiewicz, M., KusnierczaK, A., Szymas, B., 2015. Reproduction of the red mason solitary bee Osmia rufa (syn. Osmia bicornis)(Hymenoptera: Megachilidae) in various habitats. Eur. J. Entomol. 112, 100-105. https://doi.org/10.14411/eje.2015.005
  11. Goldway, M., Schneider, D., Yehuda, H., Matityahu, A., Eisikowitch, D., Stern, R.A. 2001. The effect of apple Sallele compatibility on fruit set levels in non-optimal fertilization conditions. Acta Hort. 561, 231-234. https://doi.org/10.17660/actahortic.2001.561.33
  12. Jang, H.I., Seo, H.H., Park, S.J., 2002. Strategy for fruit cultivation research under the changing climate. Korean J. Hortic. Sci. Technol. 20, 270-275.
  13. Janick, J., Cummins, J.H., Brown, S.K., Hemmat, M., 1996. Apples, in: Janick, J., Moore, J.N. (Eds.), Fruit breeding. Wiley, New York, pp. 1-77.
  14. Kang, I.K., 2004. Selection of crabapples as pollinizers for 'Hongro' apple cultivar. Hortic. Sci. Technol. 22, 212-215.
  15. Kang, I.K., Lee, G.J., Kim, M.J., Kwon, S.I., Peak, P.Y., Choi, D.G., 2002. Selection of crabapple as pollinizers for major apple cultivars in apple orchard. Hortic. Sci. Technol. 20, 330-334.
  16. Kim, I.S., 1999. Studies on the ecological characterstics and utilization of Osmia spp. as pollinators. Master thesis, Kongju National University, pp. 1-44.
  17. Korea Meteorological Administration (KMA). 2019. Annual climatological report. KMA press, Seoul.
  18. Kweon, H.J., Park, M.Y., Song, Y.Y., Sagong, D.H., 2017. Influence of accumulated hours of low temperature in dormant and changing temperature after bud breaking on flowering of main apple cultivars in Korea, Korean J. Agric. For. Meteorol. 19, 252-269. https://doi.org/10.5532/KJAFM.2017.19.4.252
  19. Kwon, Y.A., Kim, J., Lee, S., 2005. Distribution and changing trend on the occurrence of spring colds. J. Korea. Geogr. Soc. 40, 285-295.
  20. Lee, K.Y., Lee, K.S., Yoon, H.J., Jin, B.R., 2015. Ovarian development and secretion of vitellogenin protein during the wintering period and after emergence in the hornfaced bee, Osmia cornifrons. J. Asia Pac. Entomol. 18, 515-523. https://doi.org/10.1016/j.aspen.2015.07.002
  21. Lee, K.Y., Yoon, H.J., Lee, K.S., Jin, B.R. 2016a. Development and mating behavior of Osmia cornifrons (Hymenoptera: Megachilidae) in the constant temperature. J. Asia Pac. Entomol., 19, 281-287. https://doi.org/10.1016/j.aspen.2016.03.003
  22. Lee, K.Y., Lee, J.A., Han, H.H., Na, S.Y., Kim, S.Y., Yoon, H.J., 2016b. The appropriate sex ratio and density of the mason Bee (Osmia cornifrons) for apple pollination. Korea. J. Apic. 31, 337-349.
  23. Lee, K.Y., Lee, S.B., Park, I.G., Kang, P.D., Yoon, H.J., 2014. Distribution status of mason bees, Osmia spp. (Hymenotpera: Megachilidae) in apple orchard of Korea. J. Apic. 29, 223-234.
  24. Lee, K.Y., Yoon, H.J., Park, I.G., Kwon, C.R., Lee, S.C., 2010. Survey on the current status of mason bees in apple orchard of Korea. J. Apic. 25, 53-61.
  25. Lee, S.W., Choi, K.H., Lee, D.H., Kim, D.A., Ryu, H.K., Lee, Y.I., 2002. Distribution and collection of Osmia bees in the mountain areas of Korea. Korean J. Appl. Entomol. 41, 263-267.
  26. Maeta, Y., 1978. Comparative studies on the biology of bee of the genus Osmia of Japan. with special reference to their managements for pollination of crops (Hymenoptera: Megachilidae). Bull. Tohoku. Natl. Agric. Exp. Stn. 57, 1-221.
  27. Maeta, Y., Kitamura, T., 1981. Pollinating efficiency by Osmia cornifrons (Radoszkowski) in relation to required number of nesting bees for economic fruit production. Honeybee Sci. 2, 65-72.
  28. Maeta, Y., Nadano, K., Kitamura, T., 2005. Relationship between seed yield of chinese milk vetch and density of female bees, Osmia cornifrons (RADOSZKOWSKI)(Hymenoptera, Megachilidae). Chugoku. Kontyu. 19:45-61.
  29. Masoudi, H., Tabatabaei Fard, S.A., Borghei, A.M., Shahbeik, M., 2005. Determination and comparison of physical and mechanical properties of three export varieties of three export varieties of apples. Iran J. Agric. Sci. 11, 215-231.
  30. Moron, D., Lenda, M., Skorka, P., Szentgyorgyi, H., Settele, J., Woyciechowski, M., 2009. Wild pollinator communities are negatively affected by invasion of alien goldenrods in grassland landscapes. Biol. Conserv. 142, 1322-1332. https://doi.org/10.1016/j.biocon.2008.12.036
  31. Park, J.G., Hong, J.S., Choi, I.M., Kim, J.B., Kim, S.H., Park, H.S., 1998. Applications of artificial pollination, spraying gibberellin A4+7 plus benzyladenine for production of uniform fruits in 'Fuji' apples. Kor. J. Hort. Sci. Technol. 16. 27-29.
  32. Radmacher, S., Strohm, E., 2011. Effects of constant and fluctuating temperatures on the the development of the solitary bee Osmia bicornis (Hymenoptera: Megachilidae). Apidologie 42. 711-720. https://doi.org/10.1007/s13592-011-0078-9
  33. Rural Development Administration (RDA), 2019. Apple cultivation, RDA press, Jeonju.
  34. Samnegard, U., Hamback, P.A., Smith, H.G., 2019. Pollination treatment affects fruit set and modifies marketable and storable fruit quality of commercial apples. R. Soc. Open Sci. 6(12), 190326. https://doi.org/10.1098/rsos.190326
  35. Schneider, D., Stern, R.A., Eisikowitch, D., Goldway, M. 2001. Analysis of S-alleles by PCR for determination of compatibility in the 'Red Delicious' apple orchard. J. Hort. Sci. Biotech. 76, 596-600.
  36. Sedivy, C., Dorn, S., 2014. Towards a sustainable management of bees of the subgenus Osmia (Megachilidae; Osmia) as fruit tree pollinators. Apidologie 45, 88-105. https://doi.org/10.1007/s13592-013-0231-8
  37. Seo, H.H., Park, H.S., 2003. Fruit quality of 'Tsugaru' apples influenced by meteorological elements. Korean J. Agric. For. Meteor. 5, 218-225.
  38. Sheffield, C.S., Westby, S.M., Smith, R.F., Kevan, P.G., 2008. Potential of bigleaf lupine for building and sustaining Osmia lignaria populations for pollination of apple. Can. Entomol. 140, 589-599. https://doi.org/10.4039/N08-011
  39. Statistics Korea, 2020. Crops production statistics, http://kosis.kr/ (accessed 15 January, 2021)
  40. Torchio, P.F., 1985. Field experiments with the pollinator species, Osmia lignaria propinqua Cresson in apple orchards: V, 1979-1980, methods of introducing bees, nesting success, seed counts, fruit yields (Hymenoptera: Megachilidae). Kansas Entomol. Soc. 58, 448-464.
  41. Vicens, N., Bosch, J., 2000. Weather-dependent pollinator activity in an apple orchard, with special reference to Osmia cornuta and Apis mellifera (Hymenoptera: Megachilidae and Apidae). Environ. Entomol. 29, 413-420. https://doi.org/10.1603/0046-225X-29.3.413
  42. Yoo, J., Kang, I.K., 2014. Effects of artificial pollination using pollen suspension on fruit set and quality attributes of 'Fuji' apples. Curr. Res. Agric. Life sci. 32, 211-214. https://doi.org/10.14518/crals.2014.32.4.026
  43. Yoon, H.J., Lee, K.Y., Park, I.G., Kim, M.I., Kim, Y.M., Kang, P.D., 2012. Current status of insect pollinators use in apple orchards. J. Apic. 27, 105-116.
  44. Yoon, H.J., Lee, K.Y., Kim, M.A., Park, I.G., Kang, P.D., 2013. Characteristics on pollinating activity of Bombus terrestris and Osmia cornifrons under different weather conditions at apple orchard. J. Apic. 28, 163-171.
  45. Yoon, H.J., Lee, K.Y., Kim, S.Y., Lee, Y.B., Kim, N., Jin, B.R., 2015. Effects of location, direction, altitude, and placement of trap nests on the rate of trap-nesting of Osmia solitary bees. J. Asia Pac. Entomol. 18, 695-700. https://doi.org/10.1016/j.aspen.2015.08.004
  46. Yoon, H.J., Lee, K.Y., Lee, H.S., Lee, M.Y., Choi, Y.S., Lee, M.L., Kim, G.H., 2017. Survey of insect pollinators use for horticultural crops in Korea, 2016. J. Apic. 32, 223-235. https://doi.org/10.17519/apiculture.2017.09.32.3.223
  47. Zurbuchen, A., Landert, L., Klaiber, J., Müller, A., Hein, S., Dorn, S., 2010. Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances. Biol. Conserv. 143, 669-676. https://doi.org/10.1016/j.biocon.2009.12.003