DOI QR코드

DOI QR Code

Sensory Physiology of Sex Pheromone and Its uses for Insect Pest Management

성페로몬 감각생리와 해충관리기술

  • Kim, Yonggyun (Department of Plant Medicals, College of Life Sciences, Andong National University)
  • 김용균 (안동대학교 생명과학대학 식물의학과)
  • Received : 2020.12.24
  • Accepted : 2021.02.01
  • Published : 2021.03.01

Abstract

Sex pheromone is used for chemical communication for mating in a species-specific manner in insects. Insect antennae possess sensory receptors specific to sex pheromone components and generate receptor potential to be perceived by the brain to evoke mating behavior. The sex pheromones have been used for monitoring specific species of insect pests to predict their subsequent occurrences based on a temperature-dependent growth model. Sex pheromones are also used for controlling pest insects using several different strategies such as mass capture, lure-and-kill, or mating disruption. This review explains the sensory physiology and insect pest management techniques related with sex pheromone.

성페로몬은 곤충 종 특이적으로 교미신호를 전달하는 화학신호물질이다. 곤충의 촉각에는 이러한 성페로몬 화학물질을 받아들이는 특이적 수용체를 지닌다. 성페로몬이 이 수용체에 결합하면서 감각전위를 발생시키고 이는 대뇌로 전달되어 정보 인식을 통해 교미행동을 유발하게 한다. 성페로몬은 또한 해충의 발생을 모니터링하는 데 이용되어 온도발육모델과 더불어 향후 발생상황을 예측하는 데 널리 이용되고 있다. 더불어 성페로몬이 해충의 대량포획, 유살 또는 교미교란을 유발하여 직접적으로 방제에 응용된다. 본 종설은 성페로몬과 관련된 곤충 생리 및 이를 이용한 해충관리기술을 소개한다.

Keywords

References

  1. Albre, J., Lienard, M.A., Sirey, T.M., Schmidt, S., Tooman, L.K, Carraher, C., Greenwood, D.R., Lofstedt, C., Newcomb, R.D., 2012. Sex pheromone evolution is associated with differential regulation of the same desaturase gene in two genera of leafroller moths. PLoS Genet. 8, e1002489. https://doi.org/10.1371/journal.pgen.1002489
  2. Allwood, A.J., Chinajariyawong, A., Drew, R.A.I., Hamacek, E.L., Hancock, D.L., Hengsawad, C., Jipanin, J.C., Jirasurat, M., Kong Krong, C., Kritsaeneepaiboon, S., Leong, C.T.S., Vijaysegaran, S., 1999. Host plant records for fruit flies (Diptera: Tephritidae) in Southeast Asia. Raffles Bull. Zool. Suppl. 7, 1-92.
  3. Amarasekare, K.G., Shearer, P.W., 2017. Stability of Cacopsylla pyricola (Hemiptera: Psyllidae) populations in pacific northwest pear orchards managed with long-term mating disruption for Cydia pomonella (Lepidoptera: Tortricidae). Insects 8, 105. https://doi.org/10.3390/insects8040105
  4. Anfora, G., Baldessari, M., De Cristofaro, A., Germinara, G.S., Ioriatti, C., Reggiori, F., Vitagliano, S., Angeli, G., 2008. Control of Lobesia botrana (Lepidoptera: Tortricidae) by biodegradable ecodian sex pheromone dispensers. J. Econ. Entomol. 101, 444-450. https://doi.org/10.1603/0022-0493(2008)101[444:COLBLT]2.0.CO;2
  5. Atanassov, A., Shearer, P.W., Hamilton, G., Polk, D., 2002. Development and implementation of a reduced risk peach arthropod management program in New Jersey. J. Econ. Entomol. 95, 803-812. https://doi.org/10.1603/0022-0493-95.4.803
  6. Atanassov, A., Shearer, P.W., Hamilton, G., 2003. Peach pest management programs impact beneficial fauna abundance and Grapholita molesta (Lepidoptera: Tortricidae) egg parasitism and predation. Environ. Entomol. 32, 780-788. https://doi.org/10.1603/0046-225X-32.4.780
  7. Atterholt, C.A., Delwiche, M.J., Rice, R.E., Krochta, J.M., 1998. Study of biopolymers and paraffin as potential controlled-release carriers for insect pheromones. J. Agric. Food Chem. 46, 4429-4434. https://doi.org/10.1021/jf980642u
  8. Babson, A.L., 1963. Eradicating the gypsy moth. Science 142, 447-448. https://doi.org/10.1126/science.142.3591.447-a
  9. Bae, S., Shin, M., Kim, Y., 2006. Impaired antennae of field-captured males of Oriental fruit moth, Grapholita molesta, in apple orchard and its ultrastructural analysis. J. Basic and Life Res. Sci. 6, 24-27.
  10. Baker, T.C., Heath, J.J., 2005. Pheromones: function and use in insect control, in: Gilbert, L., Iatrou, K., Gill, S.S. (Eds.), Comprehensive molecular insect science. Vol 6, Elsevier, NY, pp. 407-459.
  11. Baker, T.C., Staten, R.T., Flint, H.M., 1990. Use of pink bollworm pheromone in the southwestern United States, in: Ridgway, R.L., Silverstein, R.M., Inscoe, M.N. (Eds.), Behavior-modifying chemicals for insect management. Dekker, NY, pp. 417-436.
  12. Baker, T.C., Dittl, T., Mafra-Neto, A., 1997. Disruption of sex pheromone communication in the blackheaded fireworm in Wisconsin cranberry marshes by using fireworm MSTRSTM devices. J. Agric. Entomol. 14, 449-457.
  13. Barclay, H.J., Judd, G.J.R., 1995. Models for mating disruption by means of pheromone for insect pest control. Res. Popul. Ecol. 37, 239-247. https://doi.org/10.1007/BF02515826
  14. Bartell, R.J., 1982. Mechanisms of communication disruption by pheromone in the control of Lepidoptera: a review. Physiol. Entomol. 7, 353-364. https://doi.org/10.1111/j.1365-3032.1982.tb00310.x
  15. Bateman, M.A., Insungza, V., Arreta, P., 1973. The eradication of Queensland fruit fly from Easter Island. FAO Plant Prot. Bull. 21, 114.
  16. Baxter, I.H., Howard, C.G., Armsworth, L.E.E., Barton C.J., 2008. The potential of two electrostatic powders as the basis for an autodissemination control method of Plodia interpunctella (Hubner). J. Stored Products Res. 44, 152-161. https://doi.org/10.1016/j.jspr.2007.08.004
  17. Bengtsson, M., Karg, G., Kirsch, P.A., Lofqvist, J., Sauer, A., Witzgall, P., 1994. Mating disruption of pea moth Cydia nigricana F. (Lepidoptera: Tortricidae) by a repellent blend of sex pheromone and attraction inhibitors. J. Chem. Ecol. 20, 871-887. https://doi.org/10.1007/BF02059584
  18. Bigsby, K.M., Tobin, P.C., Sills, E.O., 2011. Anthropogenic drivers of gypsy moth spread. Biol. Invasions 13, 2077. https://doi.org/10.1007/s10530-011-0027-6
  19. Birch, M.C., 1977. Response of both sexes of Trichoplusia ni (Lepidoptera: Noctuidae) to virgin females and to synthetic pheromone. Ecol. Entomol. 2, 99-104. https://doi.org/10.1111/j.1365-2311.1977.tb00870.x
  20. Boguslawski, C.V., Basedow, T., 2001. Studies in cotton fields in Egypt on the effects of pheromone mating disruption on Pectinophora gossypiella (Saund.) (Lep., Gelechiidae), on the occurrence of other arthropods, and on yields. J. Appl. Entomol. 125, 327-331. https://doi.org/10.1046/j.1439-0418.2001.00545.x
  21. Boo, K.S., Yang, J.P., 2000. Kairomomes used by Trichogramma chilonis to find Helicoverpa assulta eggs. J. Chem. Ecol. 26, 359-375. https://doi.org/10.1023/A:1005453220792
  22. Butenandt, A., Beckermann, R., Stam, D., Hecker, E. 1959. Uber den sexuallockstoff des seidenspineers Bombyx mori: reindarstellung und konstitution. Z. Naturforsch. 14, 283-284.
  23. Byers, J.A., 2007. Simulation of mating disruption and mass trapping with competitive attraction and camouflage. Environ. Entomol. 36, 1328-1338. https://doi.org/10.1603/0046-225X(2007)36[1328:SOMDAM]2.0.CO;2
  24. Calkins, C.O., Faust, R.J., 2003. Overview of areawide programs and the program for suppression of codling moth in the western USA directed by the United States Department of Agriculture-Agricultural Research Service. Pest Manag. Sci. 59, 601-604. https://doi.org/10.1002/ps.712
  25. Carde, R.T., 1990. Principles of mating disruption, in: Ridgway, R.L., Silverstein, R.M., Inscoe, M.N. (Eds.), Behavior-modifying chemicals for insect management: applications of pheromones and other attractants. Marcel Dekker, NY, pp. 47-71.
  26. Carde, R.T., 2007. Using pheromones to disrupt mating of moth pests, in: Kogan, M. (Ed.), Perspectives in ecological theory and integrated pest management. Cambridge University Press, New York, NY, pp. 122-169.
  27. Carde, R.T., Minks, A.K., 1995. Control of moth pests by mating disruption: successes and constraints. Annu. Rev. Entomol. 40, 559-585. https://doi.org/10.1146/annurev.en.40.010195.003015
  28. Carde, A.M., Baker, T.C., Carde, R.T., 1979. Identification of a four-component sex pheromone of the female oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae). J. Chem. Ecol. 5, 423-427. https://doi.org/10.1007/BF00987927
  29. Carde, R.T., Staten, R.T., Mafra-Neto, A., 1998. Behaviour of pink bollworm males near high-dose, point sources of pheromone in field wind tunnels: insights into mechanism of mating disruption. Entomol. Exp. Appl. 89, 35-46. https://doi.org/10.1046/j.1570-7458.1998.00379.x
  30. CDFA (California Department of Food and Agriculture). 2010. Insect trapping guide, 12th ed. CDFA, Sacramento, CA.
  31. Charmillot, P.J., 1990. Mating disruption technique to control codling moth in western Switzerland, in: Ridgway, R.L., Silver-stein, R.M., Inscoe, M.N. (Eds.), Behavior-modifying chemicals for insect management. Dekker, NY, pp. 165-182.
  32. Charmillot, P.J., Hofer, D., 1997. Control of codling moth, Cydia pomonella L., by an attract and kill formulation. Int. Org. Biol. Integr. Control Noxions Anim. Plants West Palearctic Reg. Sect. Bull. 20, 139-140.
  33. Charmillot, P.J., Pasquier, D., Scalco, A., Hofer, D., 1996. Essais de lutte contre le carpocapse Cydia pomonella L. par un procede attracticide. Mitt. Schweiz. Entomol. Ges. 69, 431-439.
  34. Choi, M.Y., Fuerst, E.J., Rafaeli, A., Jurenka, R., 2003. Identification of a G protein-coupled receptor for pheromone biosynthesis activating neuropeptide from pheromone glands of the moth Heliothis zea. Proc. Natl. Acad. Sci. USA 100, 9721-9726. https://doi.org/10.1073/pnas.1632485100
  35. Clearwater, J.R., Foster, S.P., Muggleston, S.J., Dugdale, J.S., Priesner, E., 1991. Intraspecific variation and interspecific differences in sex pheromones of sibling species in Ctenopseustis obliquana complex. J. Chem. Ecol. 17, 413-429. https://doi.org/10.1007/BF00994342
  36. Cork, A., De Souza, K., Hall, D.R., Jones, O.T., Casagrande, E., Krishnaiah, K., Syed, Z., 2008. Development of PVC-resin-controlled release formulation for pheromones and use in mating disruption of yellow rice stem borer, Scirpophaga incertulas. Crop Prot. 27, 248-255. https://doi.org/10.1016/j.cropro.2007.05.011
  37. Critchley, B.R., Chamberlain, D.J., Campio, D.G., Attique, M.R., Ali, M., Ghaffar, A., 1991. Integrated use of pink bollworm pheromone formulations and selected conventional insecticides for the control of the cotton pest complex in Pakistan. Bull. Entomol. Res. 81, 371-378. https://doi.org/10.1017/S0007485300031928
  38. Cunningham, R.T., 1989. Population detection, in: Robinson, A.S., Hooper, G. (Eds.), Fruit flies: their biology, natural enemies and control. Elsevier, Amsterdam, pp. 221-230.
  39. De Lame, F.M., Gut, L.J., 2006. Effect of monitoring trap and mating disruption dispenser application heights on captures of male Grapholita molesta (Busck; Lepidoptera: Tortricidae) in pheromone and virgin female-baited traps. Environ. Entomol. 35, 1058-1068. https://doi.org/10.1603/0046-225X-35.4.1058
  40. Deland, J.P., Judd, G.J.R., Roitberg, B.D., 1994. Disruption of pheromone communication in three sympatric leafroller (Lepidoptera: Tortricidae) pests of apple in British Columbia. Environ. Entomol. 23, 1084-1090. https://doi.org/10.1093/ee/23.5.1084
  41. DeLury, N.C., Judd, G.J.R., Gardiner, M.G.T., 2005. Antennal detection of sec limitata pheromone by female Pandemis limitata (Robinson) (Lepidoptera: Tortricidae) and its impact on their calling behaviour. J. Entomol. Soc. B. C. 102, 3-11.
  42. den Otter, C.J., Schuil, van Oosten, S., 1978. Reception of host-plant odours and sex pheromone in Adoxophyes orana (Lepidoptera: Tortricidae): electrophysiology and morphology. Entomol. Exp. Appl. 24, 570-578. https://doi.org/10.1111/j.1570-7458.1978.tb02818.x
  43. Dickens, J.C., 1979. Electrophysiological investigations of olfaction in bark beetles. Bull. Soc. Entomol. Suisse 52, 203-216.
  44. Doane, C.C., Brooks, W., 1981. Research and development of pheromones for insect control with emphasis on the pink bollworm, in: Mitchell, E.R. (Ed.), Management of insect pests with semiochemicals. Plenum, New York, NY, pp. 295-303.
  45. Drew, R.A.I., Hancock, D.L., 2000. Phylogeny of the Tribe Dacini (Dacinae) based on morphological, distributional, and biological data, in: Aluja, M., Norrbom A.L. (Eds.), Fruit flies (Tephritidae): phylogeny and evolution of behavior. CRC, Boca Raton, FL, pp. 491-504.
  46. Elkins, R.B., Klonsky, K.M., DeMoura, R.L., 2005. Cost of production for transitioning from conventional codling moth control to aerosol-released mating disruption ("puffers") in pears. Acta Hortic. 671, 559-563. https://doi.org/10.17660/actahortic.2005.671.78
  47. Elkinton, R.B., Carde, R.T., 1981. The use of pheromone traps to monitor distribution and population trends of the gypsy moth, in: Michell, E.R. (Ed.), Management of insect pests with semiochemicals, Plenum, NY, pp. 41-55.
  48. Epstein, D.L., Zack, R.S., Brunner, J.F., Gut, L., Brown, J.J., 2001. Ground beetle activity in apple orchards under reduced pesticide management regimes. Biol. Control 21, 97-104. https://doi.org/10.1006/bcon.2001.0929
  49. Epstein, D.L., Stelinski, L.L., Reed, T., Miller, J.R., Gut, L.J., 2006. Higher densities of distributed pheromone sources provide disruption of codling moth (Lepidoptera: Tortricidae) superior to that of lower densities of clumped sources. J. Econ. Entomol. 99, 1327-1333. https://doi.org/10.1603/0022-0493-99.4.1327
  50. Epstein, D.L., Stelinski, L.L., Miller, J.R., Grieshop, M.J., Gut, L.J., 2011. Effects of reservoir dispenser height on efficacy of mating disruption of codling moth (Lepidoptera: Tortricidae) in apple. Pest. Manag. Sci. 67, 975-979. https://doi.org/10.1002/ps.2141
  51. Evenden, M.L., Haynes, K.F., 2001. Potential for the evolution of resistance to pheromone-based mating disruption tested using two pheromone strains of the cabbage looper, Trichoplusia ni. Entomol. Exp. Appl. 100, 131-134. https://doi.org/10.1046/j.1570-7458.2001.00856.x
  52. Evenden, M.L., McLaughlin, J.R., 2004. Factors influencing the effectiveness of an attracticide formulation against the Oriental fruit moth, Grapholita molesta. Entomol. Exp. Appl. 112, 89-97. https://doi.org/10.1111/j.0013-8703.2004.00181.x
  53. Evenden, M.L., Judd, G.J.R., Borden, J.H., 1999a. Pheromonemediated mating disruption of Choristoneura rosaceana: is the most attractive blend really the most effective? Entomol. Exp. Appl. 90, 37-47. https://doi.org/10.1046/j.1570-7458.1999.00421.x
  54. Evenden, M.L., Judd, G.J.R., Borden, J.H., 1999b. Simultaneous disruption of pheromone communication in Choristoneura rosaceana and Pandemis limitata (Robinson) (Lepidoptera: Tortricidae). Chemoecology 9, 73-80. https://doi.org/10.1007/s000490050036
  55. Evenden, M.L., Judd, G.J.R., Borden, J.H., 1999c. Simultaneous Disruption of Pheromone Communication in Choristoneura rosaceana and Pandemis limitata with Pheromone and Antagonist Blends. J. Ecol. 25, 501-517.
  56. Evenden, M.L., Judd, G.J.R., Borden, J.H., 2000. Investigations of mechanisms of pheromone communication disruption of Choristoneura rosaceana (Harris) in a wind tunnel. J. Insect Behav. 13, 499-510. https://doi.org/10.1023/A:1007807501232
  57. Evenden, M.L., Mori, B.A., Gries, R., Otani, J., 2010. Sex pheromone of the red clover casebearer moth, Coleophora deauratella, an invasive pest of clover in Canada. Entomol. Exp. Appl. 137, 255-261. https://doi.org/10.1111/j.1570-7458.2010.01062.x
  58. Fadamiro, H.Y., Coss, A.A., Dittl, T., Baker, T.C., 1998. Suppression of mating by blackheaded fireworm (Lepidoptera: Tortricidae) in Wisconsin cranberry marshes by using MSTRS devices. J. Agric. Entomol. 15, 377-386.
  59. Farkas, S.R., Shorey, H.H., Gaston, L.K., 1974. Sex pheromones of Lepidoptera. The use of widely separated evaporators of Looplore for the disruption of pheromone communication in Trichoplusia ni. Environ. Entomol. 3, 876-877. https://doi.org/10.1093/ee/3.5.876
  60. FDACS (Florida Department of Agriculture and Consumers Services). 2004. Florida fruit fly detection manual. Division of Plant Industry, FDACS, Gainsville, FL.
  61. Fernandez, D.E., Beers, E.H., Brunner, J.F., Doerr, M.D., Dunley, J.E., 2005. Effects of seasonal mineral oil applications on the pest and natural enemy complexes of apple. J. Econ. Entomol. 98, 1630-1640. https://doi.org/10.1603/0022-0493-98.5.1630
  62. Fitzpatrick, S.M., 2006. Delayed mating reduces fecundity of blackheaded fireworm, Rhopobota naevana, on cranberry. Entomol. Exp. Appl. 120, 245-250. https://doi.org/10.1111/j.1570-7458.2006.00452.x
  63. Flint, H.M., Merkle, J.R., 1983. Pink bollworm (Lepidoptera: Gelechiidae): communication disruption by pheromone composition imbalance. J. Econ. Entomol. 76, 40-46. https://doi.org/10.1093/jee/76.1.40
  64. Flint, H.M., Merkle, J.R., 1984. The pink bollworm (Lepidoptera: Gelechiidae): alteration of male response to gossyplure by release of its component Z,Z- Isomer. J. Econ. Entomol. 77, 1099-1104. https://doi.org/10.1093/jee/77.5.1099
  65. Foster, S.P., Roelofs, W.L., 1987. Sex pheromone differences in populations of the brownheaded leafroller, Ctenopseustis obliquana. J. Chem. Ecol. 13, 623-629. https://doi.org/10.1007/BF01880104
  66. Friedrich, H., 1976. Phenylpropanoid constituents of essential oils. Lioydia 39, 1-7.
  67. Galizia, C.G., Nagler, K., Holldobler, B., Menzel, R., 1998. Odour coding is bilaterally symmetrical in the antennal lobes of honeybees (Apis mellifera). Eur. J. Neurosci. 10, 2964-2974. https://doi.org/10.1046/j.1460-9568.1998.00303.x
  68. Galizia, C.G., Sachse, S., Mustaparta, H., 2000. Calcium responses to pheromones and plant odours in the antennal lobe of the male and female moth Heliothis virescens. J. Comp. Physiol. A 186, 1049-1063. https://doi.org/10.1007/s003590000156
  69. Gaston, L.K., Shorey, H.H., Saario, C.A., 1967. Insect population control by the use of sex pheromones to inhibit orientation between the sexes. Nature 213, 1155. https://doi.org/10.1038/2131155a0
  70. Girling, R.D., Higbee, B.S., Carde, R.T., 2013. The plume also rises: trajectories of pheromone plumes issuing from point sources in an orchard canopy at night. J. Chem. Ecol. 39, 1150-1160. https://doi.org/10.1007/s10886-013-0341-9
  71. Gokce, A., Stelinski, L.L., Gut, L.J., Whalonet, M.E., 2007. Comparative behavioral and EAG responses of female obliquebanded and redbanded leafroller moths (Lepidoptera: Tortricidae) to their sex pheromone components. Eur. J. Entomol. 104, 187-194. https://doi.org/10.14411/eje.2007.029
  72. Gray, T.G., Hulime, M.A., 1995. Mating disruption of Douglas-fir tussock moth one and two years after the application of pheromone. J. Entomol. Soc. Br. Columbia 92, 101-105.
  73. Grosse-Wilde, E., Gohl, T., Bouche, E., Breer, H., Krieger, J., 2007. Candidate pheromone receptors provide the basis for the response of distinct antennal neurons to pheromonal compounds. Eur. J. Neurosci. 25, 2364-2373. https://doi.org/10.1111/j.1460-9568.2007.05512.x
  74. Gut, L.J., Stelinski, L.L., Thompson, D.R., Miller, J.R., 2004. Behaviour-modifying chemicals: prospects and constraints in IPM, in: Koul, O., Dhaliwal, G., Cuperus, G. (Eds.), Integrated pest management: potential, constraints, and challenges. CABI, NY, pp. 73-120.
  75. Gyorgyi, T.K., Roby-Shemkovitz, A.J., Lerner, M.R., 1988. Characterization and cDNA cloning of the pheromone-binding protein from the tobacco hornworm, Manduca sexta: a tissuespecific developmentally regulated protein. Proc. Natl. Acad. ci. USA 85, 9851-9855. https://doi.org/10.1073/pnas.85.24.9851
  76. Hagstrom, A.K., Albre, J., Tooman, L.K., Thirmawithana, A.H., Corcoran, J., Lofstedt, C., Newcomb, R.D., 2014. A novel fatty acyl desaturase from the pheromone glands of Ctenopseustis obliquana and C. herana with specific Z5-desaturase activity on myristic acid. J. Chem. Ecol. 40, 63-70. https://doi.org/10.1007/s10886-013-0373-1
  77. Han, K.S., Jung, J.K., Choi, K.H., Lee, S.W., Boo, K.S., 2001. Sex pheromone composition and male trapping of the oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae) in Korea. J. Asia Pac. Entomol. 4, 31-35. https://doi.org/10.1016/S1226-8615(08)60099-0
  78. Harari, A.R., Zahavi, T., Steinitz, H., 2015. Female detection of the synthetic sex pheromone contributes to the efficacy of mating disruption of the European grapevine moth, Lobesia botrana. Pest Manag. Sci. 71, 316-322. https://doi.org/10.1002/ps.3830
  79. Haynes, K.F., Li, W.G., Baker, T.C., 1986. Control of pink bollworm moth (Lepidoptera: Gelechiidae) with insecticides and pheromones (attracticide): lethal and sublethal effects. J. Econ. Entomol. 79, 1466-1471. https://doi.org/10.1093/jee/79.6.1466
  80. Hee, A.K.W., Tan, K.H., 1998. Attraction of female and male Bactrocera papayae to conspecific males fed with methyl eugenol and attraction of females to male sex pheromone components. J. Chem. Ecol. 24, 753-764. https://doi.org/10.1023/A:1022302605357
  81. Hee, A.K.W., Tan, K.H., 2004. Male sex pheromonal components derived from methyl eugenol in the hemolymph of the fruit fly Bactrocera papayae. J. Chem. Ecol. 30, 2127-2138. https://doi.org/10.1023/B:JOEC.0000048778.02561.70
  82. Heuskin, S.E., Verheggen, F.J., Haubruge, E., Wathelet, J.P., 2011. The use of semiochemical slow-release devices in integrated pest management strategies. Biotechnol. Agro. Soc. Environ. 15, 459-470.
  83. Hildebrand, J.G., Sheppard, G.M., 1997. Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu. Rev. Neurosci. 20, 595-631. https://doi.org/10.1146/annurev.neuro.20.1.595
  84. Howlett, F.M., 1912.The effect of citronella oil in two species of Dacus. Trans. Entomol. Soc. Lond. 60, 412-418. https://doi.org/10.1111/j.1365-2311.1912.tb03101.x
  85. Howlett, F.M., 1915. Chemical reactions of fruit flies. Bull. Entomol. Res. 6, 297-305. https://doi.org/10.1017/S0007485300043571
  86. Hsu, C.L., Agnello, A.M., Reissig, W.H., 2009. Edge effects in the directionally biased distribution of Choristoneura rosaceana (Lepidoptera: Tortricidae) in apple orchards. Environ. Entomol. 38, 433-441. https://doi.org/10.1603/022.038.0217
  87. IAEA (International Atomic Energy Agency). 2003. Trapping guidelines for area-wide fruit fly programmes. IAEA, Vienna.
  88. Il'ichev, A.L., Williams, D.G., Gut, L.J., 2007. Dual pheromone dispenser for combined control of codling moth Cydia pomonella L. and oriental fruit moth Grapholita molesta (Busck) (Lep., Tortricidae) in pears. J. Appl. Entomol. 131, 368-378. https://doi.org/10.1111/j.1439-0418.2007.01201.x
  89. Isaacs, R., Ulczynski, M., Wright, B., Gutet, L.J., Miller, J.R., 1999. Performance of the microsprayer, with application for pheromone-mediated control of insect pests. J. Econ. Entomol. 92, 1157-1164. https://doi.org/10.1093/jee/92.5.1157
  90. Jones, V.P., Unruh, T.R., Horton, D.R., Mills, N.J., Brunner, J.F., Beers, E.H., Shearer, P.W., 2009. Tree fruit IPM programs in the western United States: the challenge of enhancing biological control through intensive management. Pest Manag. Sci. 65, 1305-1310. https://doi.org/10.1002/ps.1839
  91. Jones, V.P., Wiman, N.G., 2012. Modeling the interaction of physiological time, seasonal weather patterns, and delayed mating on population dynamics of codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Popul. Ecol. 54, 421-429. https://doi.org/10.1007/s10144-012-0315-8
  92. Judd, G.J.R., Gardiner, M.G.T., 2004. Simultaneous disruption of pheromone communication and mating in Cydia pomonella, Choristoneura rosaceana and Pandemis limitata Lepidoptera: Tortricidae) using Isomate-CM/LR in apple orchards. J. Entomol. Soc. Br. Colombia. 101, 3-13.
  93. Judd, G.J.R., Gardiner, M.G.T., 2005. Towards eradication of codling moth in British Columbia by complimentary actions of mating disruption, tree banding and sterile insect technique: five-year study in organic orchards. Crop Prot. 24, 718-733. https://doi.org/10.1016/j.cropro.2004.12.009
  94. Judd, G.J.R., DeLury, N.C., Gardiner, M.G.T., 2005a. Examining disruption of pheromone communication in Choritoneura rosaceana and Pandemis limitata using microcapsulated (Z)-11-tetradecenyl acetate applied in a laboratory flight tunnel. Entomol. Exp. Appl. 114, 35-45. https://doi.org/10.1111/j.0013-8703.2005.00230.x
  95. Judd, G.J.R., Gardiner, M.G.T. DelUry, N.C., Karg, G,, 2005b. Reduced antennal sensitivity, behavioural response, and attraction of male codling moths, Cydia pomenella, to their pheromone (E,E)-8,10-dodecadien-1-ol following various pre-exposure regimes. Entomol. Exp. Appl. 114, 65-78. https://doi.org/10.1111/j.0013-8703.2005.00231.x
  96. Jung, S., Kim, Y., 2008. Comparative analysis to damage reduction of host plant by applying a mating disruptor of the oriental fruit moth, Grapholita molesta, in two different cultivation environments of apple orchard. Korean J. Appl. Entomol. 47, 51-57. https://doi.org/10.5656/KSAE.2008.47.1.051
  97. Jung, C., Kim, Y., 2014. Comparative transcriptome analysis of sex pheromone glands of two sympatric lepidopteran congener species. Genomics 103, 308-315. https://doi.org/10.1016/j.ygeno.2014.02.009
  98. Kaissling, K.E., 1998. Flux detectors versus concentration detectors: two types of chemoreceptors. Chem. Senses 23, 99-111. https://doi.org/10.1093/chemse/23.1.99
  99. Kaissling, K.E., 2001. Olfactory perireceptor and receptor events in moths: a kinetic model. Chem. Senses 26, 125-150. https://doi.org/10.1093/chemse/26.2.125
  100. Karg, G., Sauer, A.E., 1997. Seasonal variation of pheromone concentration in mating disruption trials against European grape vine moth Lobesia botrana (Lepidoptera: Tortricidae) measured by EAG. J. Chem. Ecol. 23, 487-501. https://doi.org/10.1023/B:JOEC.0000006373.19897.eb
  101. Karg, G., Suckling, D.M., 1997. Polyethylene dispensers generate large-scale temporal fluctuations in pheromone concentration. Environ. Entomol. 26, 896-905. https://doi.org/10.1093/ee/26.4.896
  102. Karg, G., Suckling, D.M., Bradley, S.J., 1994. Absorption and release of pheromone of Epiphyas postvittana (Lepidoptera: Tortricidae) by apple leaves. J. Chem. Ecol. 20, 1825-1841. https://doi.org/10.1007/BF02066225
  103. Kehat, M., Anshelevich. L., Gordon, D., Harel, M., Zilberg, L., Dunkelblum, E., 1999. Effect of density of pheromone sources, pheromone dosage and population pressure on mating of pink bollworm, Pectinophora gossypiella (Lepidoptera: Gelechiidae). Bull. Entomol. Res. 89, 339-345. https://doi.org/10.1017/S0007485399000474
  104. Khoo, C.C.H., Yuen, K.H., Tan, K.H., 2000. Attraction of female Bactrocera papayae to sex pheromone components with two different release devices. J. Chem. Ecol. 26, 2487-2496. https://doi.org/10.1023/A:1005576427138
  105. Kim, Y., Kim, D., 2016. Integrated pest management against Bactrocera fruit flies. Korean J. Appl. Entomol. 55, 359-376. https://doi.org/10.5656/KSAE.2016.10.0.026
  106. Kim, Y., Kwon, G., 2018. Development of female annihilation technique against pumpkin fruit flies using protein-based terpinyl acetate. Korean J. Appl. Entomol. 57, 69-75. https://doi.org/10.5656/KSAE.2018.01.1.057
  107. Kim, J.Y., Leal, W.S., 2000. Ultrastructure of pheromone-detecting sensillum placodeum of the Japanese beetle, Popillia japonica (Coleoptera: Scarabaeidae). Arthropod Struct. Dev. 29, 121-128. https://doi.org/10.1016/S1467-8039(00)00022-0
  108. Kim, Y., Bae, S., Bae, S., Yoon, H., 2006. Chemical synthesis and orientation disruption bioassay of sex pheromone of the oriental fruit moth, Grapholita molesta (Busck). Korean J. Appl. Entomol. 43, 309-316.
  109. Kim, Y., Bae, S., Son, Y., Park, J., 2009. Analysis of migration of the oriental fruit moth, Grapholita molesta, in apple-cultivating areas based on population monitoring using sex pheromone and RAPD molecular marker. Korean J. Appl. Entomol. 48, 211-219. https://doi.org/10.5656/KSAE.2009.48.2.211
  110. Kim, Y., Jung, S., Kim, Y., Lee, Y., 2011. Real-time monitoring of oriental fruit moth, Grapholita molesta, populations using a remote sensing pheromone trap in apple orchards. J. Asia Pac. Entomol. 14, 259-262. https://doi.org/10.1016/j.aspen.2011.03.008
  111. Kim, K., Jung, C., Yang, C., Kwon, G., Kim, Y., 2017. Mating disruption of Grapholita molesta by RNA interference of a fatty acid desaturase expressed in adult abdomen. Korean J. Appl. Entomol. 56, 61-67. https://doi.org/10.5656/KSAE.2017.01.1.083
  112. Kim, K., Park, C., Kim, Y., 2018. Simultaneous mating disruption of two Grapholita species in apple orchards. J. Asia Pac. Entomol. 21, 1144-1152. https://doi.org/10.1016/j.aspen.2018.08.016
  113. Kim, Y., Kim, D., Park, K., Han, H., 2019. Manual (III) for security system against high risk fruit flies. HongReung Science, Seoul.
  114. Knight, A.L., 1997. Delay of mating of codling moth in pheromone disrupted orchards. Intl. Soc. Biol. Contr. WPRS Bull. 20, 203-206.
  115. Knight, A.L., Larsen, T.E., Ketner, K.C., 2004. Rainfastness of a microencapsulated sex pheromone formulation for codling moth (Lepidoptera: Tortricidae). J. Econ. Entomol. 97, 1987-1992. https://doi.org/10.1603/0022-0493-97.6.1987
  116. Knight, A.L., Hilton, R., Light, D.M., 2005. Monitoring codling moth (Lepidoptera: Tortricidae) in apple with blends of ethyl (E,Z)-2,4-decadienoate and codlemone. Environ. Entomol. 34, 598-603. https://doi.org/10.1603/0046-225X-34.3.598
  117. Knight, A.L., Stelinski, L.L., Hebert, V., Gut, L.J., Light, D.M., Brunner, J.F., 2012. Evaluation of novel semiochemical dispensers simultaneously releasing pear ester and sex pheromone for mating disruption of codling moth (Lepidoptera: Tortricidae). J. Appl. Entomol. 136, 79-86. https://doi.org/10.1111/j.1439-0418.2011.01633.x
  118. Koyama, J., Tadashi, T., Kenji, T., 1984. Eradication of the oriental fruit fly (Diptera: Tephritidae) from Okinawa Islands by male annihilation method. J. Econ. Entomol. 77, 468-472. https://doi.org/10.1093/jee/77.2.468
  119. Kuhns, E.H., Pelz-Stelinski, K., Stelinski, L.L., 2012. Reduced mating success of female tortricid moths following intense pheromone auto-exposure varies with sophistication of mating system. J. Chem. Ecol. 38, 168-175. https://doi.org/10.1007/s10886-012-0076-z
  120. Kwon, J.J., 2014. Development of a pheromone-based attract and kill formulation with visual cues to target the diurnally active apple clearwing moth, Synanthedon myopaeformis (Borkhausen), (Lepidoptera: Sesiidae). MS Thesis, University of Alberta, Canada.
  121. Landolt, P.J., Curtis, C.E., Coffelt, J.A., Vick, K.W., Doolittle, R.E., 1982. Field trials of potential navel orangeworm mating disruptants. J. Econ. Entomol. 75, 547-550. https://doi.org/10.1093/jee/75.3.547
  122. Lapointe, S.L., Stelinski, L.L., Evens, T.J., Niedz, R.P., Hall, D.G., Mafra-Neto, A., 2009. Sensory imbalance as mechanism of orientation disruption in the leafminer Phyllocnistis citrella: elucidation by multivariate geometric designs and response surface models. J. Chem. Eecol. 35, 896-903. https://doi.org/10.1007/s10886-009-9674-9
  123. Lapointe, S.L., Stelinski, L.L., Keathley, C.P., Mafra-Neto, A., 2014. Intentional coverage gaps reduce cost of mating disruption for Phyllocnistis citrella (Lepidoptera: Gracillariidae) in citrus. J. Econ. Entomol. 107, 718-726. https://doi.org/10.1603/EC13388
  124. Lassance, J.M., Lofstedt, C., 2009. Concerted evolution of male and female display traits in the European corn borer, Ostrinia nubilalis. BMC Biol. 7, 10. https://doi.org/10.1186/1741-7007-7-10
  125. Leblanc, L., Vargas, R.I., Mackey, B., Putoa, R., Pinero, J.C., 2011. Evaluation of cue-lure and methyl eugenol solid lure and insecticide dispensers for fruit fly (Diptera: Tephritidae) monitoring and control in Tahiti. Fl. Entomol. 94, 510-516. https://doi.org/10.1653/024.094.0315
  126. Lewis, W.J., Nordlund, D.A., Gueldner, R.C., Teal, P.E.A., Tumlinson, J.H., 1982. Kairomones and their use for management of entomophagous insects. J. Chem. Ecol. 8, 1323-1331. https://doi.org/10.1007/BF00987765
  127. Lie, R., Bakke, A., 1981. Practical Results from the Mass Trapping of IPS Typographus in Scandinavia, in: Mitchell, E.R. (Ed.), Management of insect pests with semiochemicals, Plenum, NY, pp. 175-181.
  128. Lienard, M.A., Strandh, M., Hedenstrom, E., Johansson, T., Lofstedt, C., 2008. Key biosynthetic gene subfamily recruited for pheromone production prior to the extensive radiation of Lepidoptera. BMC Evol. Biol. 8, 270. https://doi.org/10.1186/1471-2148-8-270
  129. Light, D.M., Flath, R.A., Buttery, R.G., Rice, R.E., Dickens, J.C., Jang, E.B., 1993. Host-plant green-leaf volatiles synergize the synthetic sex pheromones of the corn earworm and codling moth (Lepidoptera). Chemoecol. 4, 145-152. https://doi.org/10.1007/BF01256549
  130. Liu, W., Ma, P.W.K., Marsella-Herrick, P., Rosenfield, C.-L., Knipple, D.C., Roelofs, W., 1999. Cloning and functional expression of a cDNA encoding a metabolic acyl-CoA ∆9-desaturase of the cabbage looper moth, Trichoplusia ni. Insect Biochem. Mol. Biol. 29, 435-443. https://doi.org/10.1016/S0965-1748(99)00020-X
  131. Mafra-Neto, A., Baker, T.C., 1996. Elevation of pheromone response threshold in almond moth males pre-exposed to pheromone spray. Physiol. Entomol. 21, 217-222. https://doi.org/10.1111/j.1365-3032.1996.tb00858.x
  132. Manoukis, N.C., Siderhurst, M., Jang, E.B., 2015. Field estimates of attraction of Ceratitis capitata to trimedlure and Bacterocera dorsalis (Diptera: Tephritidae) to methyl eugenol in varying environments. Environ. Entomol. 44, 695-703. https://doi.org/10.1093/ee/nvv020
  133. McCormick, A.L.C., Karlsson, M., Ochoa, C.F.B., Proffit, M., Bengtsson, M., Zuluaga, M.V., Fukumoto, T., Oehlschlager, C., Prado, A.M.C., Witzgall, P., 2012. Mating disruption of Guatemalan potato moth Tecia solanivora by attractive and non-attractive pheromone blends. J. Chem. Ecol., 38, 63-70. https://doi.org/10.1007/s10886-011-0051-0
  134. McDonough, L.M., Aller, W.C., Knight, A.L., 1992. Performance characteristics of a commercial controlled-release dispenser of sex phermone for control of codling moth (Cydia pomonella) by mating disruption. J. Chem. Ecol. 18, 2177-2189. https://doi.org/10.1007/BF00984945
  135. Metcalf, R.L., 1979. Plants, chemicals and insects. Some aspects of coevolution. Bull. Entomol. Soc. Am. 25, 30-35.
  136. Metcalf, R.L., Metcalf, E.R., 1992. Fruit flies of the family Tephritidae, in: Metcalf, R.L., Metcalf, E.R. (Eds.), Plant kairomones in insect ecology and control. Routledge, Chapman & Hall Inc., New York, NY, pp. 139-152.
  137. Miliczky, E.R., Calkins, C.O., Horton, D.R., 2000. Spider abundance and diversity in apple orchards under three insect pest management programmes in Washington State, USA. Agric. Forest Entomol. 2, 203-215. https://doi.org/10.1046/j.1461-9563.2000.00067.x
  138. Miller, J.R., Gut, L.J., 2015. Mating disruption for the 21st century: matching technology with mechanism. Environ. Entomol. 44, 427-453. https://doi.org/10.1093/ee/nvv052
  139. Miller, J.R., Gut, L.J., de Lame, F.M., Stelinski, L.L., 2006a. Differentiation of competitive vs. non-competitive mechanisms mediating disruption of moth sexual communication by point sources of sex pheromone (Part 1): theory. J. Chem. Ecol. 32, 2089-2114. https://doi.org/10.1007/s10886-006-9134-8
  140. Miller, J.R., Gut, L.J., de Lame, F.M., Stelinski, L.L., 2006b. Differentiation of competitive vs. non-competitive mechanisms mediating disruption of moth sexual communication by point sources of sex pheromone (Part 2): case studies. J. Chem. Ecol. 32, 2115-2143. https://doi.org/10.1007/s10886-006-9136-6
  141. Milli, R., Koch, U.T., de Kramer, J.J., 1997. EAG measurement of pheromone distribution in apple orchards treated for mating disruption of Cydia pomonella. Entomol. Exp. Appl. 82, 289-297. https://doi.org/10.1046/j.1570-7458.1997.00143.x
  142. Minks, A.K., Carde, R.T., 1988. Disruption of pheromone communication in moths: is the natural blend really most efficacious? Entomol. Exp. Appl. 49, 25-36. https://doi.org/10.1111/j.1570-7458.1988.tb02473.x
  143. Mitchell, E.R., Jacobson, M., Baumhover, A.H., 1975. Heliothis spp.: disruption of pheromonal communication with (Z)-9-tetradecen-1-ol formate. Environ. Entomol. 4, 577-579. https://doi.org/10.1093/ee/4.4.577
  144. Mochizuki, F., Fukumoto, T., Noguchi, H., Sugie, H., Morimoto, T., Ohtani, K., 2002. Resistance to a mating disruptant composed of (Z)-11-tetradecenyl acetate in the smaller tea tortrix, Adoxophyes honmai (Yasuda) (Lepidoptera: Tortricidae). Appl. Entomol. Zool. 37, 299-304. https://doi.org/10.1303/aez.2002.299
  145. Mori, B.A., Evenden, M.L., 2013. When mating disruption does not disrupt mating: fitness consequences of delayed mating in moths. Entomol. Exp. Appl. 146, 50-65. https://doi.org/10.1111/j.1570-7458.2012.01309.x
  146. Mori, B.A., Evenden, M.L., 2014. Efficacy and mechanisms of communication disruption of the red clover casebearer moth (Coleophora deauratella) with complete and partial pheromone formulations. J. Chem. Ecol. 40, 577-589. https://doi.org/10.1007/s10886-014-0461-x
  147. Nishida, R., Fukami, H., 1990. Sequestration of distasteful compounds by some pharmacophagous insects. J. Chem. Ecol. 16, 151-164. https://doi.org/10.1007/BF01021276
  148. Nishida, R., Tan, K.H., Serit, M., Lajis, N.H., Sukari, A.M., Takahashi, S., Fukami, H., 1988. Accumulation of phenylpropanoids in the rectal glands of males of the Oriental fruit fly, Dacus dorsalis. Experientia 44, 534-536. https://doi.org/10.1007/BF01958941
  149. Niwa, C.G., Daterman, G.E., 1989. Pheromone mating disruption of Rhyacionia zozana (Lepidoptera: Tortricidae): influence on the associated parasite complex. Environ. Entomol. 18, 570-574. https://doi.org/10.1093/ee/18.4.570
  150. Oehlschlager, A.C., Chinchilla, C., Castillo, G., Gonzalez, L., 2002. Control of red ring disease by mass trapping of Rhynchophorus palmarum (Coleoptera: Curculionidae). Fl. Entomol. 85, 507-513. https://doi.org/10.1653/0015-4040(2002)085[0507:CORRDB]2.0.CO;2
  151. Palaniswamy, P., Seabrook, W.D., 1985. The alteration of calling behaviour by female Choristoneura fumiferana when exposed to synthetic sex pheromone. Entomol. Exp. Appl. 37, 13-16. https://doi.org/10.1111/j.1570-7458.1985.tb03447.x
  152. Pearson, G.A., Meyer, J.R., 1996. Female grape root borer (Lepidoptera: Sesiidae) mating success under synthetic sessid sex pheromone treatment. J. Entomol. Sci. 3, 323-330. https://doi.org/10.18474/0749-8004-31.3.323
  153. Perkins, M.V., Fletcher, M.T., Kitching, W., Drew, R.A.I., Moore, C.J., 1990. Chemical studies of the rectal gland secretions of some species of Bactrocera dorsalis complex of fruit flies (Diptera: Tephritidae). J. Chem. Ecol. 16, 2475-2487. https://doi.org/10.1007/BF01017470
  154. Petkevicius, K., Lofstedt, C., Borodina, I., 2020. Insect sex pheromone production in yeasts and plants. Curr. Opin. Biotechnol. 65, 259-267. https://doi.org/10.1016/j.copbio.2020.07.011
  155. Polavarapu, S., Lonergan, G., Peng, H., Neilsen, K., 2001. Potential for mating disruption of Sparganothis sulfureana (Lepidoptera: Tortricidae) in cranberries. J. Econ. Entomol. 94, 658-665. https://doi.org/10.1603/0022-0493-94.3.658
  156. Raghu, S., 2004. Functional significance of phytochemical lures to dacine fruit flies (Diptera: Tephritidae): an ecological and evolutionary synthesis. Bull. Entomol. Res. 94, 385-399. https://doi.org/10.1079/BER2004313
  157. Reinke, M.D., Siegert, P.Y., McGhee, P.S., Gut, L.J., Miller, J.R., 2014. Pheromone release rate determines whether sexual communication of oriental fruit moth is disrupted competitively vs non-competitively. Entomol. Exp. Appl. 150, 1-6. https://doi.org/10.1111/eea.12137
  158. Renou, M., Guerrero, A., 2000. Insect parapheromone in olfaction research and semiochemical-based pest control strategies. Annu. Rev. Entomol. 48, 605-630. https://doi.org/10.1146/annurev.ento.45.1.605
  159. Rhainds, M., Therrien, P., Morneau, L., 2012. Pheromone-based monitoring of spruce budworm (Lepidoptera: Tortricidae) larvae in relation to trap position. Can. Entomol. 144, 379-395. https://doi.org/10.4039/tce.2012.18
  160. Rice, R.E., Kirsch, P., 1990. Mating disruption of oriental fruit moth in the United States, in: Ridgway, R.L., Slverstein, R.M., Inscoe, M.N. (Eds.), Behavior-modifying chemicals for insect management. Dekker, NY, pp. 193-211.
  161. Ridgway, R.L., Inscoe, M.N., Dickerson, W.A., 1990. Role of the boll weevil pheromone in pest management, in: Ridgway, R.L., Silverstein, R.M., Inscoe, M.N. (Eds.). Behavior-modifying chemicals for insect management. Dekker, NY, pp. 437-471.
  162. Riedl, H., Croft, B.A., 1974. A study of pheromone trap catches in relation to codling moth (Lepidoptera: Olethreutidae) damage. Can. Entomol. 112, 655-663. https://doi.org/10.4039/Ent112655-7
  163. Riedl, H., Croft, B.A., Howitt, A.G., 1976. Forecasting codling moth phenology based on pheromone trap catches and physiological-time models. Can. Entomol. 108, 449-460. https://doi.org/10.4039/Ent108449-5
  164. Rodriguez, S., Hao, G., Liu, W., Pina, B., Rooney, A.P., Camps, F., Roelofs, W.L,, Fabrias, G., 2004. Expression and evolution of ∆9 and ∆11 desaturase genes in the moth Spodoptera littoralis. Insect Biochem. Mol. Biol. 34, 1315-1328. https://doi.org/10.1016/j.ibmb.2004.09.003
  165. Roelofs, W.L., Liu, W., Hao, G., Jiao, H., Rooney, A.P., Linn, C.E. Jr., 2002. Evolution of moth sex pheromones via ancestral genes. Proc. Natl. Acad. Sci. USA 99, 13621-13626. https://doi.org/10.1073/pnas.152445399
  166. Rumbo, E.R., Vickers, R.A., 1997. Prolonged adaptation as possible mating disruption mechanism in oriental fruit moth Cydia (= Grapholita) molesta. J. Chem. Ecol. 23, 445-457. https://doi.org/10.1023/B:JOEC.0000006370.64127.49
  167. Sanders, C.J., 1987. Flight and copulation of female spruce budworm in pheromone-permeated air. J. Chem. Ecol. 13, 1749-1758. https://doi.org/10.1007/BF00980215
  168. Sanders, C.J., 1997. Mechanisms of mating disruption in moths, in: Carde, R.T., Minks, A.K. (Eds.), Insect pheromone research: new direction. Chapman & Hall, New York. pp. 333-346.
  169. Sauer, A.E., Karg, G., 1998. Variables affecting pheromone concentration in vineyards treated for mating disruption of grape vine moth Lobesia botrana. J. Chem. Ecol., 24, 289-302. https://doi.org/10.1023/A:1022532425253
  170. Schmitz, V., Roehrich, R., Stockel, J., 1995. Disruption mechanisms of pheromone communication in the European grape moth Lobesia botrana Den. & Schiff. (Lep., Tortricidae) II. Influence of the population density and the distance between insects for males to detect the females in atmosphere impregnated by pheromone. J. Appl. Entomol. 119, 303-308. https://doi.org/10.1111/j.1439-0418.1995.tb01290.x
  171. Schmitz, V., Renou, M., Roehrich, R., Stockel, J., Lecharpentier, P., 1997. Disruption mechanisms of pheromone communication in the European grape moth Lobesia botrana Den & Schiff. III. Sensory adaptation and habituation. J. Chem. Ecol., 23, 83-95. https://doi.org/10.1023/B:JOEC.0000006347.86822.17
  172. Schwalbe, C.P., Mastro, V.C., 1988. Multispecific trapping techniques for exotic-pest detection. Agri. Ecosyst. Environ. 21, 43-51. https://doi.org/10.1016/0167-8809(88)90138-7
  173. Seo, S., Jung, S., Goo, I., Kim, Y., Lee, Y., Kim, Y., 2011. Analysis of overwintering population of the oriental fruit moth, Grapholita molesta, using a remote-sensing pheromone trap. Korean J. Appl. Entomol. 50, 29-37. https://doi.org/10.5656/KSAE.2011.03.0.001
  174. Shani, A., Clearwater, J., 2001. Evasion of mating disruption in Ephestia cautella (Walker) by increased pheromone production relative to that of undisrupted populations. J. Stored Prod. Res. 37, 237-252. https://doi.org/10.1016/S0022-474X(00)00025-4
  175. Sharov, A.A., Leonard, D., Liebhold, A.M., Roberts, E.A., Dickerson, W., 2002. "Slow the spread": a national program to contain the gypsy moth. J. Forestry 100, 30-36.
  176. Shelly, T.E., 2000. Flower-feeding effects mating performance in male oriental fruit flies Bactrocera dorsalis. Ecol. Entomol. 25, 109-114. https://doi.org/10.1046/j.1365-2311.2000.00231.x
  177. Shelly, T.E., Nishimoto, J., Kurashima, R., 2012. Captures of three economically important fruit fly species (Diptera: Tephritidae) in traps baited with liquid versus solid formulations of male lures in a Hawaiian coffee field. J. Econ. Entomol. 105, 1186-1193. https://doi.org/10.1603/EC11371
  178. Shorey, H.H., 1977. Manipulation of insect pests of agricultural crops, in: Shorey, H.H., Mckelvey Jr., J.J., (Eds.), Chemical contol of insect behavior: theory and application. John Wiley and Sons, Toronto, pp. 353-367.
  179. Shorey, H.H., Gerber, R.G., 1996. Use of puffers for disruption of sex pheromone communication of codling moths (Lepidoptera: Tortricidae) in walnut orchards. Environ. Entomol. 25, 1398-1400. https://doi.org/10.1093/ee/25.6.1398
  180. Shorey, H.H., Gaston, L.K., Saario, C.A., 1967. Sex pheromones of noctuid moths. XIV. Feasibility of behavioral control by disrupting pheromone communication in cabbage loopers. J. Econ. Entomol. 60, 1541-1545. https://doi.org/10.1093/jee/60.6.1541
  181. Shorey, H.H., Sisk, C.B., Gerber, R.G., 1996. Widely separated pheromone release sites for disruption of sex pheromone communication in two species of Lepidoptera. Environ. Entomol. 25, 446-451. https://doi.org/10.1093/ee/25.2.446
  182. Showers, W.B., Smelser, R.B., Keaster, A.J., Whitford, F., Robinson, J.F., 1989a. Recapture of marked black cutworm (Lepidoptera: Noctuidae) males after long-range transport. Environ. Entomol. 18, 447-458. https://doi.org/10.1093/ee/18.3.447
  183. Showers, W.B., Whitford, F., Smelser, R.B., Keaster, A.J., Robinson, J.F., 1989b. Direct evidence for meteorologically driven long-range dispersals of an economically important moth. Ecology 70, 987-992. https://doi.org/10.2307/1941366
  184. Song, Y.Q., Dong, J.F., Qiao, H.L., Wu, J.X., 2014. Molecular characterization, expression patterns and binding properties of two pheromone-binding proteins from the oriental fruit moth, Grapholita molesta (Busck). J. Integr. Agr. 13, 2709-2720. https://doi.org/10.1016/s2095-3119(13)60686-3
  185. Staten, R.T., El-Lissy, O., Antilla, L., 1997. Successful area-wide program to control pink bollworm by mating disruption, in: Carde, R.T., Minks, A.K. (Eds.), Insect pheromone research. Springer, Boston, MA. pp. 383-396.
  186. Steiner, L.F., Lee, R.K.S., 1955. Large area tests of a male-annihilation method for oriental fruit fly control. J. Econ. Entomol. 48, 311-317. https://doi.org/10.1093/jee/48.3.311
  187. Steiner, L.F., Mitchell, W.C., Harris, E.J., Kozuma, T.T., Fujimoto, M.S., 1965. Oriental fruit fly eradication by male annihilation. J. Econ. Entomol. 58, 961-964. https://doi.org/10.1093/jee/58.5.961
  188. Steiner, L.F., Hart, W.G., Harris, E.J., Cunningham, R.T., Ohinata, K., Kamakahi, D.C., 1970. Eradication of the oriental fruit fly from the Mariana Islands by the methods of male annihilation and sterile insect release. J. Econ. Entomol. 63, 131-135. https://doi.org/10.1093/jee/63.1.131
  189. Stelinski, L.L., Gut, L.J., Miller, J.R., 2003a Concentration of air-borne pheromone required for long-lasting peripheral adaptation in the oblique banded leafroller, Choristoneura rosaceana. Physiol. Entomol., 28, 97-107. https://doi.org/10.1046/j.1365-3032.2003.00319.x
  190. Stelinski, L.L., Miller, J.R., Gut, L.J., 2003b. Presence of long-lasting peripheral adaptation in oblique-banded leafroller, Choristoneura rosaceana and absence of such adaptation in redbanded leafroller, Argyrotaenia velutinana. J. Chem. Ecol. 29, 405-423. https://doi.org/10.1023/A:1022638113121
  191. Stelinski, L.L., Gut, L.J., Pierzchala, A.V., Miller, J.R., 2004a. Field observations quantifying attraction of four tortricid moth species to high-dosage pheromone rope dispensers in untreated and pheromone-treated apple orchards. Entomol. Exp. Appl. 113, 187-196. https://doi.org/10.1111/j.0013-8703.2004.00219.x
  192. Stelinski, L.L., Gut, L.J., Vogel, K.J., Miller, J.R., 2004b. Behaviors of native vs. pheromone-exposed leafroller moths in plumes from high-dosage pheromone dispensers in a sustained-flight wind tunnel: implications for mating disruption of these species. J. Insect Beh. 17, 533-554. https://doi.org/10.1023/B:JOIR.0000042540.09188.eb
  193. Stelinski, L.L., Gut, L.J., Ketner, K.C., Miller, J.R., 2005a. Orientational disruption of codling moth, Cydia pomonella (L.) (Lep., Tortricidae), by concentrated formulations of microencapsulated pheromone in flight tunnel assays. J. Appl. Entomol. 129, 481-488. https://doi.org/10.1111/j.1439-0418.2005.01005.x
  194. Stelinski, L.L., Gut, L.J., Miller, J.R., 2005b. Occurrence and duration of long-lasting peripheral adaptation among males of three species of economically important tortricid moths. Ann. Entomol. Soc. Am. 98, 580-586. https://doi.org/10.1603/0013-8746(2005)098[0580:OADOLP]2.0.CO;2
  195. Stelinski, L.L., Gut, L.J., Mallinger, R.E., Epstein, D., Reed, T.P., Miller, J.R., 2005c. Small plot trials documenting effective mating disruption of oriental fruit moth by using high densities of wax-drop pheromone dispensers. J. Econ. Entomol. 98, 1267-1274. https://doi.org/10.1603/0022-0493-98.4.1267
  196. Stelinski, L.L., Il'ichev, A.L., Gut, L.J., 2006. Antennal and behavioral responses on virgin and mated oriental fruit moth (Lepidoptera: Tortricidae) females to their sex pheromone. Ann. Entomol. Soc. Am. 99, 898-904. https://doi.org/10.1603/0013-8746(2006)99[898:AABROV]2.0.CO;2
  197. Stelinski, L.L., Miller, J.R., Ledebuhr, R., Gut, L.J., 2007a. Mechanized applicator for large-scale field deployment of paraffin-wax dispensers of pheromone for mating disruption in tree fruit. J. Econ. Entomol., 99, 1705-1710. https://doi.org/10.1603/0022-0493-99.5.1705
  198. Stelinski, L.L., McGhee, P., Haas, M., Il'Ichev, A.L., Gut, L.J., 2007b. Sprayable microencapsulated sex pheromone formulations for mating disruption of four tortricid species: effects of application height, rate, frequency, and sticker adjuvant. J. Econ. Entomol. 100, 1360-1369. https://doi.org/10.1603/0022-0493(2007)100[1360:SMSPFF]2.0.CO;2
  199. Stelinski, L.L., McGhee, P., Grieshop, M., Brunner, J., Gut, L.J., 2008a. Efficacy and mode of action of female-equivalent dispensers of pheromone for mating disruption of codling moth. Agri. Forest Entomol. 10, 389-397. https://doi.org/10.1111/j.1461-9563.2008.00393.x
  200. Stelinski, L.L., Miller, J.R., Rogers, M.E., 2008b. Mating disruption of citrus leafminer mediated by a noncompetitive mechanism at a remarkably low pheromone release rate. J. Chem. Ecol. 34, 1107-1113. https://doi.org/10.1007/s10886-008-9501-8
  201. Stelinski, L.L., Lapointe, S.L., Meyer, W.L., 2010. Season-long mating disruption of citrus leafminer, Phyllocnistis citrella Stainton, with an emulsified wax formulation of pheromone. J. Appl. Entomol. 134, 512-520. https://doi.org/10.1111/j.1439-0418.2009.01453.x
  202. Stelinski, L.L., Gut, L.J., Miller, J.R., 2013. An attempt to increase efficacy of moth mating disruption by co-releasing pheromones with kairomones and to understand possible underlying mechanisms of this technique. Environ. Entomol. 42, 158-166. https://doi.org/10.1603/EN12257
  203. Suckling, D.M., Burnip, G.M., 1996. Orientation disruption of Planotortrix octo using pheromone or inhibitor blends. Entomol. Exp. Appl. 78, 149-158. https://doi.org/10.1111/j.1570-7458.1996.tb00776.x
  204. Suckling, D.M., Brockerhoff, E.G., 1999. Control of light brown apple moth (Lepidoptera: Tortricidae) using an attracticide. J. Econ. Entomol. 92, 367-372. https://doi.org/10.1093/jee/92.2.367
  205. Suckling, D.M., Karg, G., Bradley, S.J., 1996. Apple foliage enhances mating disruption of flight-brown apple moth. J. Chem. Ecol. 22, 325-341. https://doi.org/10.1007/BF02055102
  206. Suckling, D.M., Green, S.R., Gibb, A.R., Karg, G., 1999. Predicting atmospheric concentration of pheromone in treated apple orchards. J. Chem. Ecol. 25, 117-139. https://doi.org/10.1023/A:1020893201446
  207. Suckling, D.M., Daly, J.M., Chen, X., Karg, G., 2007. Field electroantennogram and trap assessments of aerosol pheromone dispensers for disrupting mating in Epiphyas postvittana. Pest Manag. Sci. 63, 202-209. https://doi.org/10.1002/ps.1312
  208. Suckling, D.M., Woods, B., Mitchell, V.J., Twidle, A., Lacey, I., Jang, E.B., Wallace, A.R., 2011. Mobile mating disruption of light-brown apple moths using pheromone-treated sterile Mediterranean fruit flies. Pest Manag. Sci. 67, 1004-1014. https://doi.org/10.1002/ps.2150
  209. Suckling, D.M., Dymock, J.J., Park, K.C., Wakelin, R.H., Jamieson, L.E., 2013. Communication disruption of guava moth (Coscinoptcha improbana) using a pheromone analog based on chain length. J. Chem. Ecol. 39, 1161-1168. https://doi.org/10.1007/s10886-013-0339-3
  210. Syed, Z., Ishida, Y., Taylor, K., Kimbrell, D.A., Leal, W.S., 2006. Pheromone reception in fruit flies expressing a moth's odorant receptor. Proc. Natl. Acad. Sci. USA 103, 16538-16543. https://doi.org/10.1073/pnas.0607874103
  211. Tabata, J., Noguchi, H., Kainoh, Y., Mochizuki, F., Sugie, H., 2007. Sex pheromone production and perception in the mating disruption-resistant strain of the smaller tea leafroller moth, Adoxophyes honmai. Entomol. Exp. Appl. 122, 145-153. https://doi.org/10.1111/j.1570-7458.2006.00500.x
  212. Tan, K.H., 2000. Sex pheromone components in defense of melon fly, Bactrocera cucurbitae against Asian house gecko, Hemidactylus frenatus. J. Chem. Ecol. 26, 697-704. https://doi.org/10.1023/A:1005480206023
  213. Tan, K.H., Nishida, R., 1998. Ecological significance of male attractant in the defence and mating strategies of the fruit fly, Bactrocera papayae. Entomol. Exp. Appl. 89, 155-158. https://doi.org/10.1046/j.1570-7458.1998.00394.x
  214. Teixeira, L.A., Grieshop, M.J., Gut, L.J., 2010. Effect of dispenser density on timing and duration of approaches by peach tree borer. J. Chem. Ecol. 36, 1148-1154. https://doi.org/10.1007/s10886-010-9853-8
  215. Thorpe, K.W., Van der Pers, J., Leonard, D.S., Sellers, P., Mastro, V.C., Webb, R.E., Reardon, R.C., 2007a. Electroantennogram measurements of atmospheric pheromone concentration after aerial and ground application of gypsy moth mating disruptants. J. Appl. Entomol. 131, 146-152. https://doi.org/10.1111/j.1439-0418.2007.01151.x
  216. Thorpe, K.W., Tcheslavskaia, K.S., Tobin, P.C., Blackburn, L.M., Leonard, D.S., Roberts, E.A., 2007b. Persistent effects of aerial applications of disparlure on gypsy moth: trap catch and mating success. Entomol. Exp. Appl. 125, 223-229. https://doi.org/10.1111/j.1570-7458.2007.00613.x
  217. Todd, J.L., Baker, T.C., 1999. Function of peripheral olfactory organs, in: Hansson, B.S. (Ed.), Insect olfaction. Springer, Berlin, pp. 67-96.
  218. Trimble, R.M., Pree, D.J., Carter, N.J., 2001. Integrated control of oriental fruit moth (Lepidoptera: Tortricidae) in peach orchards using insecticide and mating disruption. J. Econ. Entomol. 94, 476-485. https://doi.org/10.1603/0022-0493-94.2.476
  219. Tumlinson, J.H., Gueldner, R.C., Hardee, D.D., Thompson, A.C., Hedlin, P.A., 1971. Identification and synthesis of the four com-pounds comprising the boll weevil sex attractant. J. Org. Chem. 36, 2616-2621. https://doi.org/10.1021/jo00817a012
  220. Vargas, R.I., Mau, R.F.L., Jang, E.B., Faust, R.M., Wong, L., 2008a. The Hawaii fruit fly areawide pest management programme, in: Koul, O., Cuperus, G. (Eds.), Areawide pest management: theory and implementation. CABI, London, pp. 300-325.
  221. Vargas, R.I., Stark, J.D., Hertlein, M., Mafra-Neto, A., Coler, R., Pinero, J.C., 2008b. Evaluation of SPLAT with spinosad and methyl eugenol or cue-lure for "attract-and-kill" of oriental and melon fruit flies (Diptera: Tephritidae) in Hawaii. J. Econ. Entomol. 101, 750-768. https://doi.org/10.1093/jee/101.3.750
  222. Vargas, R.I., Burns, R.E., Mau, R.F.L., Stark, J.D., Cook, P., Pinero, J.C., 2009. Captures in methyl eugenol and cue-lure detection traps with and without insecticides and with a Farma Tech solid lure and insecticide dispenser. J. Econ. Entomol. 102, 552-557. https://doi.org/10.1603/029.102.0212
  223. Vargas, R.I., Mau, R.F.L., Stark, J.D., Pinero, J.C., Leblanc, L., Souder, S.K., 2010a. Evaluation of methyl eugenol and cue-lure traps with solid lure and insecticide dispensers for fruit fly monitoring and male annihilation in the Hawaii areawide pest management program. J. Econ. Entomol. 103, 409-415. https://doi.org/10.1603/EC09299
  224. Vargas, R.I., Shelly, T.E., Leblanc, L., Pinero, J.C., 2010b. Recent advances in methyl eugenol and cue-lure technologies for fruit fly detection, monitoring and control, in: Litwack, G. (Ed.), Vitamins and hormones, section: pheromones. Vol. 83, Academic Press, Burlington, pp. 575-596.
  225. Vargas, R.I., Leblanc, L., Harris, E.J., Manoukis, N.C., 2012a. Regional suppression of Bactrocera fruit flies (Diptera: Tephritidae) in the Pacific through biological control and prospects for future introductions into other areas of the world. Insects 3, 727-742. https://doi.org/10.3390/insects3030727
  226. Vargas, R.I., Souder, S.K., Mackey, B., Cook, P.J., Morse, J.G., Stark, J.D., 2012b. Field trials of solid triple lure (trimedlure, methyl eugenol, raspberry ketone, and DDVP) dispensers for detection and male annihilation of Ceratitis capitata (Wiedemann), Bactrocera dorsalis (Hendel) and Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) in Hawaii. J. Econ. Entomol. 105, 1557-1565. https://doi.org/10.1603/EC12122
  227. Vargas, R.I., Leblanc, L., Pinero, J.C., Hoffman, K.M., 2014a. Male annihilation, past, present, and future, in: Shelly, T., Epsky, N., Jang, E.B., Reyes-Flores, J., Vargas, R. (Eds.), Trapping tephritid fruit flies. Lures, area-wide programs, and trade implications. Springer, Berlin, pp. 493-511.
  228. Vargas, R.I., Souder, S.K., Borges, R., Mafra-Neto, A., Mackey, B., Chou, M.Y., Spafford H., 2014b. Effectiveness of a sprayable male annihilation treatment with a biopesticide against fruit flies (Dipera: Tephritidae) attacking tropical fruits. Biopest. Int. 10, 1-10.
  229. Vargas, R.I., Souder, S.K., Hoffman, K., Mercogliano, J., Smith, T.R., Hammond, J.H., Davis, B.J., Brodie, M., Dripps, J.E., 2014c. Attraction and mortality of Bactrocera dorsalis to STATICTM Spinosad ME weathered under operational conditions in California and Florida: a reduced-risk male annihilation treatment. J. Econ. Entomol. 107, 1362-1369. https://doi.org/10.1603/ec14121
  230. Vargas, R.I., Pinero, J.C., Leblanc L., 2015a. An overview of pest species of Bactrocera fruit flies (Diptera: Tephritidae) and the integration of biopesticides with other biological approaches for their management with a focus on the Pacific region. Insects 6, 297-318. https://doi.org/10.3390/insects6020297
  231. Vargas, R.I., Souder, S.K., Nkomo, E., Cook, P.J., Mackey, B., Stark, J.D., 2015b. Weathering and chemical degradation of methyl eugenol and raspberry ketone solid dispensors for detection, monitoring, and male annihilation of Bactrocera dorsalis and Bactrocera cucurbitae (Diptera: Tephritidae) in Hawaii. J. Econ. Entomol. 108, 1612-1623. https://doi.org/10.1093/jee/tov137
  232. Vatanparast, M., Kim, Y., 2019. Yeast engineering to express sex pheromone gland genes of the oriental fruit moth, Grapholita molesta. J. Asia Pac. Entomol. 22, 645-654. https://doi.org/10.1016/j.aspen.2019.04.009
  233. Vogt, R.G., Riddiford, L.M., 1981. Pheromone binding and inactivation by moth antennae. Nature 293, 161-163. https://doi.org/10.1038/293161a0
  234. Vogt, R.G., Rogers, M.E., Franco, M.D., Sun, M., 2002. A comparative study of odorant binding protein genes: differential expression of the PBP1-GOBP2 gene cluster in Manduca sexta (Lepidoptera) and the organization of OBP genes in Drosophila melanogaster (Diptera). J. Exp. Biol. 205, 719-744. https://doi.org/10.1242/jeb.205.6.719
  235. Vogt, R.G., GroBe-Wilde, E., Zhou, J.J., 2015. The Lepidoptera odorant binding protein gene family: gene gain and loss within the GOBP/PBP complex of moths and butterflies. Insect Biochem. Mol. Biol. 62, 142-153. https://doi.org/10.1016/j.ibmb.2015.03.003
  236. Waldstein, D.E., Gut, L.J., 2004. Effects of rain and sunlight on oriental fruit moth (Lepidoptera: Tortricidae) pheromone microcapsules applied to apple foliage. J. Agric. Urban Entomol, 21, 117-128.
  237. Wall, C., Sturgeon, D.M., Greenway, A.R., Perry, J.N. 1981. Contamination of vegetation with synthetic sex-attractant released from traps for the pea moth, Cydia nigricana. Entomol. Exp. Appl. 30, 111-115. https://doi.org/10.1111/j.1570-7458.1981.tb03083.x
  238. Webb, R.E., Leonhardt, B.A., Plimmer, J.R., Tatman, K.M., Boyd, V.K., Cohen, D.L., Schwalbe, C.P., Douglass, L.W., 1990. Effect of racemic disparlure released from grids of plastic ropes on mating success of gypsy moth (Lepidoptera: Lymantriidae) as influenced by dose and by population density. J. Econ. Entomol. 83, 910-916. https://doi.org/10.1093/jee/83.3.910
  239. Wee, S.L., Hee, A.K.W., Tan, K.H., 2002. Comparative sensitivity to and consumption of methyl eugenol in three Bactrocera dorsalis (Diptera: Tephritidae) complex sibling species. Chemoecology 12, 193-197. https://doi.org/10.1007/PL00012668
  240. Wee, S.L., Tan, K.H., 2005. Evidence of natural hybridization between two sympatric sibling species of Bactrocera dorsalis complex based on pheromone analysis. J. Chem. Ecol. 31, 845-858. https://doi.org/10.1007/s10886-005-3548-6
  241. Weissling, T.J., Knight, A.L., 1996. Oviposition and calling behavior of codling moth (Lepidoptera: Tortricidae) in the presence of codlemone. Ann. Entomol. Soc. Am. 89, 142-147. https://doi.org/10.1093/aesa/89.1.142
  242. White, I.M., Elson-Harris, M.M., 1992. Fruit flies of economic significance: their identification and bionomics. CABI International, Wallingford.
  243. Wins-Purdy, A.H.,Judd, G.J.R., Evenden, M.L., 2007. Disruption of pheromone communication of Choristoneura rosaceana (Lepidoptera: Tortricidae) using microencapsulated sex pheromones formulated with horticultural oil. Environ. Entomol. 36, 1189-1198. https://doi.org/10.1603/0046-225X(2007)36[1189:DOPCOC]2.0.CO;2
  244. Wins-Purdy, A.H., Judd, G.J.R., Evenden, M.L., 2008. Mechanisms of pheromone communication disruption in Choristoneura rosaceana exposed to microencapsulated (Z)-11-tetradecenyl acetate formulated with and without horticultural oil. J. Chem. Ecol. 34, 1096-1106. https://doi.org/10.1007/s10886-008-9500-9
  245. Witzgall, P., Bengtsson, M., Karg, G., Backman, A.C., Streinz, L., Kirsch, P.A., Blum, Z., Lofqvist, L., 1996. Behavioral observations and measurements of aerial pheromone in mating disruption trial against pea moth Cydia nigricana F. (Lepidpotera: Tortricidae). J. Chem. Ecol. 22, 191-206. https://doi.org/10.1007/BF02055092
  246. Witzgall, P., Kirsch, P.A., Cork, A., 2010. Sex pheromones and their impact on pest management. J. Chem. Ecol. 36, 80-100. https://doi.org/10.1007/s10886-009-9737-y
  247. Wright, R.H., 1963. Chemical control of chosen insects. New Scientist 20, 598-600.
  248. Xia, Y.H., Zhang, Y.N., Ding, B.J., Wang, H.L., Lofstedt, C., 2019. Multi-functional desaturases in two Spodoptera moths with ∆11 and ∆12 desaturation activities. J. Chem. Ecol. 45, 378-387. https://doi.org/10.1007/s10886-019-01067-3
  249. Xu, P., Atkinson, R., Jones, D.N., Smith, D.P., 2005. Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron. 45, 193-200. https://doi.org/10.1016/j.neuron.2004.12.031
  250. Yang, C.Y., Jung, J.K., Han, K.S., Boo, K.S., Yiem, M.S., 2002. Sex pheromone composition and monitoring of the oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae) in Naju pear orchards. J. Asia Pac. Entomol. 5, 201-207. https://doi.org/10.1016/S1226-8615(08)60153-3
  251. Zhang, G.H., Li, Y.P., Xu, X.L., Chen, H., Wu, J.X., 2012. Identification and characterization of two general odorant binding protein genes from the oriental fruit moth, Grapholita molesta (Busck). J. Chem. Ecol. 38, 427-436. https://doi.org/10.1007/s10886-012-0102-1
  252. Zhang, G., Chen, J., Yu, H., Tian, X., Wu, J., 2018. Molecular and functional characterization of pheromone binding protein 1 from the oriental fruit moth, Grapholita molesta (Busck). Sci. Rep. 8, 2276. https://doi.org/10.1038/s41598-018-20719-0