DOI QR코드

DOI QR Code

Elastic wave phenomenon of nanobeams including thickness stretching effect

  • Eyvazian, Arameh (Structural Vibration Control Group, Qingdao University of Technology) ;
  • Zhang, Chunwei (Structural Vibration Control Group, Qingdao University of Technology) ;
  • Musharavati, Farayi (Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University) ;
  • Khan, Afrasyab (Institute of Engineering and Technology, Department of Hydraulics and Hydraulic and Pneumatic Systems, South Ural State University) ;
  • Mohamed, Abdeliazim Mustafa (Department of Civil Engineering, College of Engineering, Prince Sattam bin Abdulaziz University)
  • Received : 2020.09.08
  • Accepted : 2020.11.08
  • Published : 2021.03.25

Abstract

The present work deals with an investigation on longitudinal wave propagation in nanobeams made of graphene sheets, for the first time. The nanobeam is modelled via a higher-order shear deformation theory accounts for both higher-order and thickness stretching terms. The general nonlocal strain gradient theory including nonlocality and strain gradient characteristics of size-dependency in order is used to examine the small-scale effects. This model has three-small scale coefficients in which two of them are for nonlocality and one of them applied for gradient effects. Hamilton supposition is applied to obtain the governing motion equation which is solved using a harmonic solution procedure. It is indicated that the longitudinal wave characteristics of the nanobeams are significantly influenced by the nonlocal parameters and strain gradient parameter. It is shown that higher nonlocal parameter is more efficient than lower nonlocal parameter to change longitudinal phase velocities, while the strain gradient parameter is the determining factor for their efficiency on the results.

Keywords

Acknowledgement

The research is financially supported by the first-class discipline project funded by the Education Department of Shandong Province and the Taishan Scholar Priority Discipline Talent Group program funded by the Government of Shandong Province.

References

  1. Al-Furjan, M., Habibi, M., Shan, L. and Tounsi, A. (2020a), "On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method", Compos. Struct., 2020, 113150. https://doi.org/10.1016/j.compstruct.2020.113150.
  2. Al-Furjan, M., Safarpour, H., Habibi, M., Safarpour, M. and Tounsi, A. (2020b), "A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method", Eng. Comput., 2020, 1-18. https://doi.org/10.1007/s00366-020-01088-7.
  3. Allam, O., Draiche, K., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Mahmoud, S., Adda Bedia, E. and Tounsi, A. (2020), "A generalized 4-unknown refined theory for bending and free vibration analysis of laminated composite and sandwich plates and shells", Comput. Concrete, Int. J., 26(2), 185-201. https://doi.org/10.12989/cac.2020.26.2.185.
  4. Asghar, S., Naeem, M.N., Hussain, M., Taj, M. and Tounsi, A. (2020), "Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis", Comput. Concrete, Int. J., 25(2), 133-144. https://doi.org/10.12989/cac.2020.25.2.133.
  5. Ashraf, M.A., Liu, Z., Peng, W.X., Jermsittiparsert, K., Hosseinzadeh, G. and Hosseinzadeh, R. (2020), "Combination of sonochemical and freeze-drying methods for synthesis of graphene/Ag-doped TiO2 nanocomposite: A strategy to boost the photocatalytic performance via well distribution of nanoparticles between graphene sheets", Ceram. Int., 46(6), 7446-7452. https://doi.org/10.1016/j.ceramint.2019.11.241.
  6. Askes, H. and Aifantis, E.C. (2009), "Gradient elasticity and flexural wave dispersion in carbon nanotubes", Phys. Rev. B, 80(19), 195412. https://doi.org/10.1103/PhysRevB.80.195412.
  7. Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, Int. J., 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579.
  8. Belbachir, N., Bourada, M., Draiche, K., Tounsi, A., Bourada, F., Bousahla, A.A. and Mahmoud, S. (2020), "Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory", Smart Struct. Syst., Int. J., 25(4), 409-422. https://doi.org/10.12989/sss.2020.25.4.409.
  9. Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A., Bourada, F., Mahmoud, S., Bedia, E. and Tounsi, A. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Compos. Struct., Int. J., 34(5), 643-655. https://doi.org/10.12989/scs.2020.34.5.643.
  10. Bendenia, N., Zidour, M., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Bedia, E., Mahmoud, S. and Tounsi, A. (2020), "Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation", Comput. Concrete, Int. J., 26(3), 213-226. https://doi.org/10.12989/cac.2020.26.3.213.
  11. Bensaid, I., Bekhadda, A. and Kerboua, B. (2018), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Adv. Nano Res., Int. J., 6(3), 279-298. http://dx.doi.org/10.12989/anr.2018.6.3.279.
  12. Berghouti, H., Adda Bedia, E., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., Int. J., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
  13. Bourada, F., Bousahla, A.A., Tounsi, A., Bedia, E., Mahmoud, S., Benrahou, K.H. and Tounsi, A. (2020), "Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation", Comput. Concrete, Int. J., 25(6), 485-495. https://doi.org/10.12989/cac.2020.25.6.485.
  14. Bousahla, A.A., Bourada, F., Mahmoud, S., Tounsi, A., Algarni, A., Bedia, E. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concrete, Int. J., 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155.
  15. Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2020), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., Int. J., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197.
  16. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Tounsi, A. and Mahmoud, S. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., Int. J., 7(3), 191-208. http://dx.doi.org/10.12989/anr.2019.7.3.191.
  17. Cai, C., Gao, X., Teng, Q., Kiran, R., Liu, J., Wei, Q. and Shi, Y. (2020a), "Hot isostatic pressing of a near α-Ti alloy: Temperature optimization, microstructural evolution and mechanical performance evaluation", Mater. Sci. Eng. A, 2020, 140426. https://doi.org/10.1016/j.msea.2020.140426.
  18. Cai, C., Wu, X., Liu, W., Zhu, W., Chen, H., Qiu, J.C.D., Sun, C.N., Liu, J., Wei, Q. and Shi, Y. (2020b), "Selective laser melting of near-α titanium alloy Ti-6Al-2Zr-1Mo-1V: Parameter optimization, heat treatment and mechanical performance", J. Mater. Sci. Technol., 57, 51-64. https://doi.org/10.1016/j.jmst.2020.05.004.
  19. Chen, S., Hassanzadeh-Aghdam, M. and Ansari, R. (2018), "An analytical model for elastic modulus calculation of SiC whisker-reinforced hybrid metal matrix nanocomposite containing SiC nanoparticles", J. Alloys Compd., 767, 632-641. https://doi.org/10.1016/j.jallcom.2018.07.102.
  20. Chen, H., Fan, D., Huang, J., Huang, W., Zhang, G. and Huang, L. (2020), "Finite element analysis model on ultrasonic phased array technique for material defect time of flight diffraction detection", Sci. Adv. Mater., 12(5), 665-675. https://doi.org/10.1166/sam.2020.3689.
  21. Chikr, S.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E., Mahmoud, S., Benrahou, K.H. and Tounsi, A. (2020), "A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach", Geomech. Eng., Int. J., 21(5), 471-487. https://doi.org/10.12989/gae.2020.21.5.471.
  22. Ebrahimi, F. and Barati, M.R. (2017a), "Flexural wave propagation analysis of embedded S-FGM nanobeams under longitudinal magnetic field based on nonlocal strain gradient theory", Arab. J. Sci. Eng., 42(5), 1715-1726. https://doi.org/10.1007/s13369-016-2266-4.
  23. Ebrahimi, F. and Barati, M.R. (2017b), "Size-dependent vibration analysis of viscoelastic nanocrystalline silicon nanobeams with porosities based on a higher order refined beam theory", Compos. Struct., 166, 256-267. https://doi.org/10.1016/j.compstruct.2017.01.036.
  24. Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", Int. J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008.
  25. Eringen, A.C. and Edelen, D. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
  26. Eyvazian, A., Shahsavari, D. and Karami, B. (2020), "On the dynamic of graphene reinforced nanocomposite cylindrical shells subjected to a moving harmonic load", Int. J. Eng. Sci., 154, 103339. https://doi.org/10.1016/j.ijengsci.2020.103339.
  27. Fan, F., Lei, B., Sahmani, S. and Safaei, B. (2020), "On the surface elastic-based shear buckling characteristics of functionally graded composite skew nanoplates", Thin-Wall. Struct., 154, 106841. https://doi.org/10.1016/j.tws.2020.106841.
  28. Fan, F., Sahmani, S. and Safaei, B. (2021), "Isogeometric nonlinear oscillations of nonlocal strain gradient PFGM micro/nano-plates via NURBS-based formulation", Compos. Struct., 255, 112969. https://doi.org/10.1016/j.compstruct.2020.112969.
  29. Fattahi, A., Safaei, B. and Ahmed, N. (2019a), "A comparison for the non-classical plate model based on axial buckling of single-layered graphene sheets", Eur. Phys. J. Plus, 134(11), 555. https://doi.org/10.1140/epjp/i2019-12912-7.
  30. Fattahi, A., Safaei, B. and Moaddab, E. (2019b), "The application of nonlocal elasticity to determine vibrational behavior of FG nanoplates", Steel Compos. Struct., Int. J., 32(2), 281-292. https://doi.org/10.12989/scs.2019.32.2.281.
  31. Fernandez-Saez, J. and Zaera, R. (2017), "Vibrations of Bernoulli-Euler beams using the two-phase nonlocal elasticity theory", Int. J. Eng. Sci., 119, 232-248. https://doi.org/10.1016/j.ijengsci.2017.06.021.
  32. Ganapathi, M. and Polit, O. (2017), "Dynamic characteristics of curved nanobeams using nonlocal higher-order curved beam theory", Physica E Low Dimens. Syst. Nanostruct., 91, 190-202. https://doi.org/10.1016/j.physe.2017.04.012.
  33. Gao, N. and Zhang, Y. (2019), "A low frequency underwater metastructure composed by helix metal and viscoelastic damping rubber", J. Vib. Control, 25(3), 538-548. https://doi.org/10.1177/1077546318788446.
  34. Gao, N., Wu, J.H., Yu, L. and Hou, H. (2016), "Ultralow frequency acoustic bandgap and vibration energy recovery in tetragonal folding beam phononic crystal", Int. J. Mod. Phys. B., 30(18), 1650111. https://doi.org/10.1142/S0217979216501113.
  35. Gao, N., Cheng, B., Hou, H. and Zhang, R. (2018a), "Mesophase pitch based carbon foams as sound absorbers", Mater. Lett., 212, 243-246. https://doi.org/10.1016/j.matlet.2017.10.074.
  36. Gao, N., Hou, H. and Wu, J.H. (2018b), "A composite and deformable honeycomb acoustic metamaterial", Int. J. Mod. Phys. B., 32(20), 1850204. https://doi.org/10.1142/S0217979218502041.
  37. Gao, N., Hou, H., Cheng, B. and Zhang, R. (2018c), "A hollow inclusion self-similarity phononic crystal with an ultra-low-frequency bandgap", Int. J. Mod. Phys. B., 32(2), 1850005. https://doi.org/10.1142/S0217979218500054.
  38. Gao, N., Hou, H., Zhang, Y. and Wu, J.H. (2018d), "Sound absorption of a new oblique-section acoustic metamaterial with nested resonator", Mod. Phys. Lett. B., 32(4), 1850040. https://doi.org/10.1142/S0217984918500409.
  39. Gao, N., Wei, Z., Hou, H. and Krushynska, A.O. (2019a), "Design and experimental investigation of V-folded beams with acoustic black hole indentations", J. Acoust. Soc. Am., 145(1), 79-83. https://doi.org/10.1121/1.5088027.
  40. Gao, N., Wei, Z., Zhang, R. and Hou, H. (2019b), "Low-frequency elastic wave attenuation in a composite acoustic black hole beam", Appl. Acoust., 154, 68-76. https://doi.org/10.1016/j.apacoust.2019.04.029.
  41. Gao, N.S., Guo, X.Y., Cheng, B.Z., Zhang, Y.N., Wei, Z.Y. and Hou, H. (2019c), "Elastic wave modulation in hollow metamaterial beam with acoustic black hole", IEEE Access, 7, 124141-124146. https://doi.org/10.1109/ACCESS.2019.2938250.
  42. Gao, Y., Xiao, W.S. and Zhu, H. (2019d), "Nonlinear bending of functionally graded porous nanobeam subjected to multiple physical load based on nonlocal strain gradient theory", Steel Compos. Struct., Int. J., 31(5), 469-488. https://doi.org/10.12989/scs.2019.31.5.469.
  43. Gao, Y., Xiao, W.S. and Zhu, H. (2019e), "Nonlinear thermal buckling of bi-directional functionally graded nanobeams", Struct. Eng. Mech., Int. J., 71(6), 669-682. https://doi.org/10.12989/sem.2019.71.6.669.
  44. Ghadiri, M., Shafiei, N. and Safarpour, H. (2017), "Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen's nonlocal elasticity", Microsyst. Technol., 23(4), 1045-1065. https://doi.org/10.1007/s00542-016-2822-6.
  45. Guo, H., Qian, K., Cai, A., Tang, J. and Liu, J. (2019), "Ordered gold nanoparticle arrays on the tip of silver wrinkled structures for single molecule detection", Sens. Actuators B Chem., 300, 126846. https://doi.org/10.1016/j.snb.2019.126846.
  46. Guo, H., Li, X., Zhu, Q., Zhang, Z., Liu, Y., Li, Z., Wen, H., Li, Y., Tang, J. and Liu, J. (2020), "Imaging nano-defects of metal waveguides using the microwave cavity interference enhancement method", Nanotechnology, 31(45), 455203. https://doi.org/10.1088/1361-6528/abaa74.
  47. Heydari, A. (2018), "Exact vibration and buckling analyses of arbitrary gradation of nano-higher order rectangular beam", Steel Compos. Struct., Int. J., 28(5), 589-606. https://doi.org/10.12989/scs.2018.28.5.589.
  48. Hu, J., Lin, J., Zhang, Y., Lin, Z., Qiao, Z., Liu, Z., Yang, W., Liu, X., Dong, M. and Guo, Z. (2019), "A new anti-biofilm strategy of enabling arbitrary surfaces of materials and devices with robust bacterial anti-adhesion via a spraying modified microsphere method", J. Mater. Chem. A, 7(45), 26039-26052. https://doi.org/10.1039/C9TA07236E.
  49. Huang, Z., Zheng, H., Guo, L. and Mo, D. (2020), "Influence of the position of artificial boundary on computation accuracy of conjugated infinite element for a finite length cylindrical shell", Acoust. Aust., 48(2), 287-294. https://doi.org/10.1007/s40857-020-00175-5.
  50. Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., Int. J., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.
  51. Hussain, M., Naeem, M.N., Taj, M. and Tounsi, A. (2020), "Simulating vibration of single-walled carbon nanotube using Rayleigh-Ritz's method", Adv. Nano Res., Int. J., 8(3), 215-228. https://doi.org/10.12989/anr.2020.8.3.215.
  52. Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Bedia, E. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis", Comput. Concrete, Int. J., 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
  53. Karami, B. and Janghorban, M. (2019), "On the dynamics of porous nanotubes with variable material properties and variable thickness", Int. J. Eng. Sci., 136, 53-66. https://doi.org/10.1016/j.ijengsci.2019.01.002.
  54. Karami, B. and Karami, S. (2019), "Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials", Adv. Nano Res., Int. J., 7(1), 51-61. http://dx.doi.org/10.12989/anr.2019.7.1.051
  55. Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., Int. J., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361.
  56. Karami, B., Janghorban, M. and Tounsi, A. (2018a), "Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order hell theory", Thin-Wall. Struct., 129, 251-264. https://doi.org/10.1016/j.tws.2018.02.025.
  57. Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018b), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., Int. J., 28(1), 99-110. https://doi.org/10.12989/scs.2018.28.1.099.
  58. Karami, B., Shahsavari, D. and Janghorban, M. (2018c), "Wave propagation analysis in functionally graded (FG) nanoplates under in-plane magnetic field based on nonlocal strain gradient theory and four variable refined plate theory", Mech. Adv. Mater. Struct., 25(12), 1047-1057. https://doi.org/10.1080/15376494.2017.1323143.
  59. Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2019a), "On the resonance of functionally graded nanoplates using bi-Helmholtz nonlocal strain gradient theory", Int. J. Eng. Sci., 144, 103143. https://doi.org/10.1016/j.ijengsci.2019.103143.
  60. Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2019b), "Wave dispersion of nanobeams incorporating stretching effect", Waves Random Complex Media, 2019, 1-21. https://doi.org/10.1080/17455030.2019.1607623.
  61. Karami, B., Gheisari, P., Nazemosadat, S.M.R., Akbari, P., Shahsavari, D. and Naghizadeh, M. (2020), "Elastic wave characteristics of graphene nanoplatelets reinforced composite nanoplates", Struct. Eng. Mech., Int. J., 74(6), 809-819. https://doi.org/10.12989/sem.2020.74.6.809.
  62. Khadimallah, M.A., Hussain, M., Khedher, K.M., Naeem, M.N. and Tounsi, A. (2020), "Backward and forward rotating of FG ring support cylindrical shells", Steel Compos. Struct., Int. J., 37(2), 137-150. https://doi.org/10.12989/scs.2020.37.2.137.
  63. Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A. and Mahmoud, S. (2020), "Analytical modeling of bending and vibration of thick advanced composite plates using a fourvariable quasi 3D HSDT", Eng. Comput., 36(3), 807-821. https://doi.org/10.1007/s00366-019-00732-1.
  64. Khosravi, F., Simyari, M., Hosseini, S.A. and Tounsi, A. (2020), "Size dependent axial free and forced vibration of carbon nanotube via different rod models", Adv. Nano Res., Int. J., 9(3), 157-172. https://doi.org/10.12989/anr.2020.9.3.157.
  65. Li, L. and Hu, Y. (2015), "Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory", Int. Journal of Engineering Science. 97 84-94. https://doi.org/10.1016/j.ijengsci.2015.08.013
  66. Li, W., Wu, T., Wang, W., Zhai, P. and Guan, J. (2014), "Broadband patterned magnetic microwave absorber", J. Appl. Phys., 116(4), 044110. https://doi.org/10.1063/1.4891475.
  67. Li, L., Hu, Y. and Ling, L. (2015), "Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory", Compos. Struct., 133, 1079-1092. https://doi.org/10.1016/j.compstruct.2015.08.014.
  68. Lim, C., Zhang, G. and Reddy, J. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
  69. Lin, J., Hu, J., Wang, W., Liu, K., Zhou, C., Liu, Z., Kong, S., Lin, S., Deng, Y. and Guo, Z. (2020), "Thermo and light-responsive strategies of smart titanium-containing composite material surface for enhancing bacterially anti-adhesive property", Chem. Eng. J., 2020, 125783. https://doi.org/10.1016/j.cej.2020.125783.
  70. Liu, Y., Zhang, Q., Xu, M., Yuan, H., Chen, Y., Zhang, J., Luo, K., Zhang, J. and You, B. (2019), "Novel and efficient synthesis of Ag-ZnO nanoparticles for the sunlight-induced photocatalytic degradation", Appl. Surface Sci., 476, 632-640. https://doi.org/10.1016/j.apsusc.2019.01.137.
  71. Liu, C., Huang, X., Wu, Y.Y., Deng, X., Liu, J., Zheng, Z. and Hui, D. (2020a), "Review on the research progress of cement-based and geopolymer materials modified by graphene and graphene oxide", Nanotechnol. Rev., 9(1), 155-169. https://doi.org/10.1515/ntrev-2020-0014.
  72. Liu, J., Wang, C., Sun, H., Wang, H., Rong, F., He, L., Lou, Y., Zhang, S., Zhang, Z. and Du, M. (2020b), "CoOx/CoNy nanoparticles encapsulated carbon-nitride nanosheets as an efficiently trifunctional electrocatalyst for overall water splitting and Zn-air battery", Appl. Catalysis B Environ., 279, 119407. https://doi.org/10.1016/j.apcatb.2020.119407.
  73. Luo, X., Guo, J., Chang, P., Qian, H., Pei, F., Wang, W., Miao, K., Guo, S. and Feng, G. (2020), "ZSM-5@ MCM-41 composite porous materials with a core-shell structure: Adjustment of mesoporous orientation basing on interfacial electrostatic interactions and their application in selective aromatics transport", Sep. Purif. Technol., 239, 116516. https://doi.org/10.1016/j.seppur.2020.116516.
  74. Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Bedia, E., Tounsi, A., Mahmoud, S., Tounsi, A. and Benrahou, K. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., Int. J., 8(4), 293-305. https://doi.org/10.12989/anr.2020.8.4.293.
  75. Menasria, A., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A., Adda Bedia, E. and Mahmoud, S. (2020), "A four-unknown refined plate theory for dynamic analysis of FG-sandwich plates under various boundary conditions", Steel Compos. Struct., Int. J., 36(3), 355-367. https://doi.org/10.12989/scs.2020.36.3.355.
  76. Mirjavadi, S.S., Forsat, M., Nia, A.F., Badnava, S. and Hamouda, A. (2020), "Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells", Adv. Nano Res., Int. J., 8(2), 149-156. https://doi.org/10.12989/anr.2020.8.2.149.
  77. Mohammadimehr, M., Monajemi, A. and Moradi, M. (2015), "Vibration analysis of viscoelastic tapered micro-rod based on strain gradient theory resting on visco-pasternak foundation using DQM", J. Mech. Sci. Technol., 29(6), 2297-2305. https://doi.org/10.1007/s12206-015-0522-2.
  78. Mou, B., Bai, Y. and Patel, V. (2020), "Post-local buckling failure of slender and over-design circular CFT columns with high-strength materials", Eng. Struct., 210, 110197. https://doi.org/10.1016/j.engstruct.2020.110197.
  79. Nami, M.R. and Janghorban, M. (2014), "Resonance behavior of FG rectangular micro/nano plate based on nonlocal elasticity theory and strain gradient theory with one gradient constant", Compos. Struct., 111, 349-353. https://doi.org/10.1016/j.compstruct.2014.01.012.
  80. Noroozi, R., Barati, A., Kazemi, A., Norouzi, S. and Hadi, A. (2020), "Torsional vibration analysis of bi-directional FG nano-cone with arbitrary cross-section based on nonlocal strain gradient elasticity", Adv. Nano Res., Int. J., 8(1), 13-24. https://doi.org/10.12989/anr.2020.8.1.013.
  81. Papargyri-Beskou, S., Polyzos, D. and Beskos, D. (2009), "Wave dispersion in gradient elastic solids and structures: A unified treatment", Int. J. Solids Struct., 46(21), 3751-3759. https://doi.org/10.1016/j.ijsolstr.2009.05.002.
  82. Polit, O., d'Ottavio, M. and Vidal, P. (2016), "High-order plate finite elements for smart structure analysis", Compos. Struct., 151, 81-90. https://doi.org/10.1016/j.compstruct.2016.01.092.
  83. Rabczuk, T. (2020), "Forced vibration analysis of functionally graded anisotropic nanoplates resting on Winkler/Pasternakfoundation", Comput. Mater. Continua, 62(2), 607-629. https://doi.org/10.32604/cmc.2020.08032.
  84. Rabhi, M., Benrahou, K.H., Kaci, A., Houari, M.S.A., Bourada, F., Bousahla, A.A., Tounsi, A., Bedia, E.A., Mahmoud, S. and Tounsi, A. (2020), "A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Geomech. Eng., Int. J., 22(2), 119-132 http://dx.doi.org/10.12989/gae.2020.22.2.119.
  85. Rahmani, M.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E., Mahmoud, S., Benrahou, K.H. and Tounsi, A. (2020), "Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a fourunknown refined integral plate theory", Comput. Concrete, Int. J., 25(3), 225-244. https://doi.org/10.12989/cac.2020.25.3.225.
  86. Refrafi, S., Bousahla, A.A., Bouhadra, A., Menasria, A., Bourada, F., Tounsi, A., Bedia, E., Mahmoud, S., Benrahou, K.H. and Tounsi, A. (2020), "Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations", Comput. Concrete, Int. J., 25(4), 311-325. https://doi.org/10.12989/cac.2020.25.4.311.
  87. Safaei, B. (2020), "The effect of embedding a porous core on the free vibration behavior of laminated composite plates", Steel Compos. Struct., Int. J., 35(5), 659-670. https://doi.org/10.12989/scs.2020.35.5.659.
  88. Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., Int. J., 7(2), 89-98. http://dx.doi.org/10.12989/anr.2019.7.2.089.
  89. Shahsavari, D. and Janghorban, M. (2017), "Bending and shearing responses for dynamic analysis of single-layer graphene sheets under moving load", J. Braz. Soc. Mech. Sci. Eng., 39(10), 3849-3861. https://doi.org/10.1007/s40430-017-0863-0.
  90. Shahsavari, D., Karami, B., Janghorban, M. and Li, L. (2017), "Dynamic characteristics of viscoelastic nanoplates under moving load embedded within visco-Pasternak substrate and hygrothermal environment", Mater. Res. Exp., 4(8), 085013. https://doi.org/10.1088/2053-1591/aa7d89.
  91. Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004.
  92. Shariati, A., Ebrahimi, F., Karimiasl, M., Vinyas, M. and Toghroli, A. (2020), "On transient hygrothermal vibration of embedded viscoelastic flexoelectric/piezoelectric nanobeams under magnetic loading", Adv. Nano Res., Int. J., 8(1), 49-58. https://doi.org/10.12989/anr.2020.8.1.049.
  93. Su, F., Jia, Q., Li, Z., Wang, M., He, L., Peng, D., Song, Y., Zhang, Z. and Fang, S. (2019), "Aptamer-templated silver nanoclusters embedded in zirconium metal-organic framework for targeted antitumor drug delivery", Micropor. Mesopor. Mater., 275, 152-162. https://doi.org/10.1016/j.micromeso.2018.08.026.
  94. Thai, S., Thai, H.T., Vo, T.P. and Patel, V.I. (2017), "A simple shear deformation theory for nonlocal beams", Compos. Struct., 183, 262-270. https://doi.org/10.1016/j.compstruct.2017.03.022.
  95. Tounsi, A., Al-Dulaijan, S., Al-Osta, M.A., Chikh, A., Al-Zahrani, M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a twoparameter elastic foundation", Steel Compos. Struct., Int. J., 34(4), 511-524. http://dx.doi.org/10.12989/scs.2020.34.4.511.
  96. Wang, W., Guo, J., Long, C., Li, W. and Guan, J. (2015), "Flaky carbonyl iron particles with both small grain size and low internal strain for broadband microwave absorption", J. Alloys Compd., 637, 106-111. https://doi.org/10.1016/j.jallcom.2015.02.220.
  97. Wu, C.P. and Lin, C.C. (2020), "Static analysis of multiple graphene sheet systems in cylindrical bending and resting on an elastic medium", Struct. Eng. Mech., Int. J., 75(1), 109-122. https://doi.org/10.12989/sem.2020.75.1.109.
  98. Yan, H., Xue, X., Chen, W., Wu, X., Dong, J., Liu, Y. and Wang, Z. (2020), "Reversible Na+ insertion/extraction in conductive polypyrrole-decorated NaTi2 (PO4) 3 nanocomposite with outstanding electrochemical property", Appl. Surf. Sci., 530, 147295. https://doi.org/10.1016/j.apsusc.2020.147295.
  99. Yu, H., Zhu, X., Qian, G., Gong, X. and Nie, X. (2020), "Evaluation of phosphorus slag (PS) content and particle size on the performance modification effect of asphalt", Constr. Build. Mater., 256, 119334. https://doi.org/10.1016/j.conbuildmat.2020.119334.
  100. Zhu, W., Zhang, Z., Chen, D., Chai, W., Chen, D., Zhang, J., Zhang, C. and Hao, Y. (2020), "Interfacial voids trigger carbon-based, all-inorganic CsPbIBr 2 perovskite solar cells with photovoltage exceeding 1.33 V", Nano-Micro Lett., 12, 1-14. https://doi.org/10.1007/s40820-020-00425-1.
  101. Zine, A., Bousahla, A.A., Bourada, F., Benrahou, K.H., Tounsi, A., Adda Bedia, E., Mahmoud, S. and Tounsi, A. (2020), "Bending analysis of functionally graded porous plates via a refined shear deformation theory", Comput. Concrete, Int. J., 26(1), 63-74. https://doi.org/10.12989/cac.2020.26.1.063.