References
- Bae, K.T., Kim, C.J. (2016). An agricultural estimate price model of artificial neural network by optimizing hidden layer, J. Korean Inst. Inform. Technol., 14(12), 161-169. https://doi.org/10.14801/jkiit.2016.14.12.161
- Caruana, R., Lawrence, S., and Giles, L. (2002). Overfitting in neural nets: backpropagation, conjugate gradient, and early stopping, Adv. Neural. Inf. Process. Syst., 402-408.
- Cho, Y.H., Seo, Y.D., Park, D.J., and Jeong, J.C. (2016). Study on the activation functions for efficient learning in DNN, J. Inst. Electron. Inform. Eng., 800-803.
- Ciresan, D.C., and Giusti, A. (2012). Deep neural networks segment neuronal membranes in electron microscopy images, Adv. Neural. Inf. Process. Syst., 12(2), 2843-2851.
- Ciresan, D.C., Meier, U., and Masci, J. (2012). Multi-Column Deep Neural Network for Traffic Sign Classification, Neural. Netw., 32, 333-338. https://doi.org/10.1016/j.neunet.2012.02.023
- Jang, I.D. and Wee, S.M. (2001). The analysis telecommunication service market with data mining, J. Korea Inform. Sci. Soc., 28(2), 1-3.
- Jeon, J., Choi, J.Y., Sohn, J., and Kim, S. (2018a). Performance analysis of a spiral wound forward osmosis membrane module, J. Korea Soc. Environ. Eng., 40(12), 481-486. https://doi.org/10.4491/ksee.2018.40.12.481
- Jeon, J., Kim, N., Choi, J.Y., and Kim, S. (2019). Applicability of statistics-based forward osmosis module models, J. Korea Soc. Environ. Eng., 41(11), 611-618. https://doi.org/10.4491/KSEE.2019.41.11.611
- Jeon, J., Jung, J., Lee, S., Choi, J.Y., and Kim, S. (2018b). A simple modeling approach for a forward osmosis system with a spiral wound module, Desalination, 433, 120-131. https://doi.org/10.1016/j.desal.2018.01.004
- Ji, S., Park, J. (2020). Improvement of existing machine learning methods of digital signal by changing the step-size, J. Digit. Converg., 18(2), 261-268. https://doi.org/10.14400/JDC.2020.18.2.261
- Jo, J.M. (2019). Effectiveness of normalization pre-processing of big data to the machine learning performances, J. Inst. Electron. Inform. Sci., 14(3), 547-552.
- Joo, G., Park, C., and Im, H. (2020). Performances evaluation of machine learning optimizers, J. Inst. Korean Electr. Electron. Eng., 24(3), 766-776.
- Kim, J.E., Blandin, G., Phuntsho, S., Verliefde, A., Le-Clech, P., and Shon, H.K. (2017). Practical considerations for operability of an 8" spiral wound forward osmosis module: Hydrodynamics, fouling behaviour and cleaning strategy, Desalination, 404, 249-258. https://doi.org/10.1016/j.desal.2016.11.004
- Kim, J.E., Phuntsho, S., Ali, S.M., Choi, J.Y., and Shon, H.K. (2018). Forward osmosis membrane modular configurations for osmotic dilution of seawater by forward osmosis and reverse osmosis hybrid system, Water Res., 128, 183-192. https://doi.org/10.1016/j.watres.2017.10.042
- Kim, S., Paudel, S., and Seo, G.T. (2015). Forward osmosis membrane filtration for microalgae harvesting cultivated in sewage effluent, Environ. Eng. Res., 20, 99-104. https://doi.org/10.4491/eer.2015.005
- Kum, D., Ryu, J., Sung, Y., Han, J., and Lim, K.J. (2017). Development and Assessment for extended daily streamflow regression equation of TMDL station using Machine Learning, Korean Soc. Water Environ., 289-290.
- Lee, D.Y., and Chang, B.H. (2020a). A study on development of a prediction model for Korean music box office based on deep learning, Int. J. Cotents, 20(8), 10-18.
- Lee, J., Choi, J.Y., Choi, J.S., and Kim, S. (2017). A statistics-based forward osmosis membrane characterization method without pressurized reverse osmosis experiment, Desalination, 403, 36-45. https://doi.org/10.1016/j.desal.2016.04.023
- Lee, S.M., Park, K.D., and Kim, I.K. (2020b). Comparison of machine learning algorithms for Chl-a prediction in the middle of Nakdong River (focusing on water quality and quantity factors), J. Korean Soc. Water Wastewater, 34(4), 277-288. https://doi.org/10.11001/jksww.2020.34.4.277
- Google Tensorflow. https://www.tensorflow.org (December 22, 2020).