DOI QR코드

DOI QR Code

Degradation characteristics and reaction pathways of tetracycline by ferrate(VI) in various aqueous conditions

Ferrate(VI)를 이용한 다양한 수중 환경에서의 tetracycline의 분해 특성 및 반응 경로 연구

  • Park, Kyeong-Deok (Division of Earth Environmental System Science, Pukyong National University) ;
  • Kim, Il-Kyu (Department of Environmental Engineering, Pukyong National University)
  • 박경덕 (부경대학교 지구환경시스템과학부) ;
  • 김일규 (부경대학교 환경공학과)
  • Received : 2020.10.16
  • Accepted : 2020.12.20
  • Published : 2021.02.15

Abstract

Tetracycline is one of the most commonly used as antibiotics for the livestock industry and it is still widely used nowadays. Tetracycline and its metabolites are excreted with excrement, which is difficult to completely removed with conventional sewage treatment, therefore it is apprehended that the tetracycline-resistant bacteria occurs. In this study, the oxidant named ferrate(VI) was used to degrade the tetracycline and investigate the reaction between ferrate(VI) and tetracycline under various aqueous conditions. The highest degradation efficiency of tetracycline occurred in basic condition (pH 10.1 ± 0.1) because of the pKa values of tetracycline and ferrate(VI). The results also showed the effect of water temperature on the degradation of tetracycline was not significant. In addition, the dosage of ferrate(VI) was higher, the degradation of tetracycline and the self-degradation of ferrate(VI) also higher, finally the efficiency of ferrate(VI) was lower. The results said that the various mechanisms effects the reaction of ferrate(VI) oxidation, it required the consideration of the characteristics of the target compound for optimal degradation efficiency. Additionally, intermediate products were detected with LC/MS/MS and three degradation pathways were proposed.

Keywords

Acknowledgement

이 논문은 2019년도 부경대학교 연구년 교수 지원사업에 의하여 연구되었음.

References

  1. Afonso-Olivares, C., Torres-Padron, M. Sosa-Ferrera, Z., and Santana-Rodriguez, J.J. (2013). Assessment of the presence of pharmaceutical compounds in seawater samples from coastal area of Gran Canaria Island (Spain), Antibiotics, 2, 274-287. https://doi.org/10.3390/antibiotics2020274
  2. Alvarez-Torrellas, S., Rodriguez, A., Ovejero, G., and Garcia, J. (2016). Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials, Chem. Eng. J., 283, 936-947. https://doi.org/10.1016/j.cej.2015.08.023
  3. Auerbach, E.A., Seyfried, E.E., and McMahon, K.D. (2007). Tetracycline resistance genes in activated sludge wastewater treatment plants, Water Res., 41(5), 1143-1151. https://doi.org/10.1016/j.watres.2006.11.045
  4. Chen, J., Xua, X., Zeng, X., Feng, M., Qu, R., Wang, Z., Nesnas, N., and Sharma, V.K., (2018). Ferrate(VI) oxidation of polychlorinated diphenyl sulfides: Kinetics, degradation, and oxidized products, Water Res., 143, 1-9. https://doi.org/10.1016/j.watres.2018.06.023
  5. Chen, J., Qi, Y., Pan, X., Wu, N., Zuo, J., Li, C., Qu, R., Wang, Z., and Chen, Z. (2019). Mechanistic insights into the reactivity of Ferrate(VI) with phenolic compounds and the formation of coupling products, Water Res., 158, 338-349. https://doi.org/10.1016/j.watres.2019.04.045
  6. Dabrowski, A., Podkoscielny, P., Hubicki, Z., and Barczak, M. (2005). Adsorption of phenolic compounds by activated carbon-a critical review, Chemosphere, 58(8), 1049-1070. https://doi.org/10.1016/j.chemosphere.2004.09.067
  7. Deng, J., Wu, H., Wang, S., Liu, Y., and Wang, H. (2019). Removal of sulfapyridine by ferrate(VI): efficiency, influencing factors and oxidation pathway, Environ. Technol., 40(12). 1585-1591. https://doi.org/10.1080/09593330.2018.1426642
  8. Dong, H., Qiang, Z., Lian, J., and Qu, J. (2017). Promoted oxidation of diclofenac with ferrate (Fe(VI)): Role of ABTS as the electron shuttle, J. Hazard. Mater., 336, 65-70. https://doi.org/10.1016/j.jhazmat.2017.04.056
  9. Drzewicz, P., Drobniewska, A., Sikorska, K., and Nalecz-Jawecki, G. (2018). Analytical and ecotoxicological studies on degradation of fluoxetine and fluvoxamine by potassium ferrate, Environ. Technol., 40(25), 3265-3275. https://doi.org/10.1080/09593330.2018.1468488
  10. Duan, L., Li, L., Xu, Z., and Chen, W. (2014). Adsorption of tetracycline to nano-NiO: the effect of co-existing Cu(ii) ions and environmental implications, Environ. Sci. Processes Impacts, 16, 1462-1468. https://doi.org/10.1039/c4em00096j
  11. Elmund, G.K., Morrison, S.M., Grant, D.W., and Nevins, M.P. (1971). Role of excreted chlortetracycline in modifying the decomposition process in feedlot waste, Bull. Environ. Contam. Toxicol., 6(2), 129-132. https://doi.org/10.1007/BF01540093
  12. Feng, M., Baum, J.C., Nesnas, N., Lee, Y., Huang, C.H., and Sharma, V.K. (2019). Oxidation of sulfonamide antibiotics of six-membered heterocyclic moiety by ferrate(VI): Kinetics and mechanistic insight into SO2 extrusion, Environ. Sci. Technol., 53(5), 2695-2704. https://doi.org/10.1021/acs.est.8b06535
  13. Figueroa-Diva, R.A., Vasudevan, D., and MacKay, A.A. (2010). Trends in soil sorption coefficients within common antimicrobial families, Chemosphere, 79, 786-793. https://doi.org/10.1016/j.chemosphere.2010.03.017
  14. Graham, N., Jiang, C.C., Li, X.Z., Jiang, J.Q., and Ma, J. (2004). The influence of pH on the degradation of phenol and chlorophenols by potassium ferrate, Chemosphere, 56, 949-956. https://doi.org/10.1016/j.chemosphere.2004.04.060
  15. Grobben-Verpoorten, A., Dihuidi, K., Roets, E., Hoogmartens, J., and Vanderhaeghe, H. (1985). Determination of the stability of tetracycline suspensions by high performance liquid chromatography, Pharm. Weekbl., 7, 104-108. https://doi.org/10.1007/BF01968711
  16. Han, Q., Wang, H., Dong, W., Liu, T., Yin, Y., and Fan, H. (2015). Degradation of bisphenol-A by ferrate(VI) oxidation: Kinetics, products and toxicity assessment, Chem. Eng. J., 262, 34-40. https://doi.org/10.1016/j.cej.2014.09.071
  17. Huang, H., Sommerfeld, D., Dunn, B.C., Eyring, E.M., and Lloyd, C.R. (2001). Ferrate(VI) oxidation of aqueous phenol: Kinetics and mechanism, J. Phys. Chem. A, 105(14), 3536-3541. https://doi.org/10.1021/jp0039621
  18. Jiang, J.Q. (2013). Advances in the development and application of ferrate(VI) for water and wastewater treatment, J. Chem. Technol. Biotechnol., 89(2), 165-177. https://doi.org/10.1002/jctb.4214
  19. Kanari, N., Ostrosi, E., Diliberto, C., Filippova, I., Shallari, S., Allain, E., Diot, F., Patisson F., and Yvon, J. (2019). Green process for industrial waste transformation into super-oxidizing materials named alkali metal ferrates (VI), Materials, 12(12), 1977. https://doi.org/10.3390/ma12121977
  20. Kemper, N. (2008). Veterinary antibiotics in the aquatic and terrestrial environment, Ecol. Indic., 8(1), 1-13. https://doi.org/10.1016/j.ecolind.2007.06.002
  21. Kim, K.H., Cho, E.S., Kim, K.S., Kim, J.E., Seol, K.H., Park, J.C., and Kim, Y.H. (2015). Investigation on changes in pig farm productivity after ban of antibiotics growth promoter in commercial mixed feed, Korean. J. Agric. Sci., 42(3), 223-229. https://doi.org/10.7744/cnujas.2015.42.3.223
  22. Kulshrestha, P., Giese,, R.F., and Aga, D.S. (2004). Investigating the molecular interactions of oxytetracycline in clay and organic matter: Insights on factors affecting its mobility in soil, Environ. Sci. Technol., 38(15), 4097-4105. https://doi.org/10.1021/es034856q
  23. Kumar, K., Gupta, S.C., Baidoo, S.K., Chander, Y., and Rosen, C.J. (2005). Antibiotic uptake by plants from soil fertilized with animal manure, J. Environ. Qual., 34, 2082-2085. https://doi.org/10.2134/jeq2005.0026
  24. Laksono, F.B. and Kim, I.K.. (2015). Application of in situ liquid ferrate(VI) for 2-bromophenol removal, J. Korean Soc. Water Wastewater, 29(6), 685-692. https://doi.org/10.11001/jksww.2015.29.6.685
  25. Laksono, F.B. and Kim, I.K. (2017). Study on 4-bromophenol degradation using wet oxidation in-situ liquid ferrate(VI) in the aqueous phase, Desalination, Water Treat., 58, 391-398. https://doi.org/10.5004/dwt.2017.11428
  26. Lee, Y., Cho, M., Kim, J.Y., and Yoon. J. (2004). Chemistry of ferrate (Fe(VI)) in aqueous solution and its applications as a green chemical, J. Ind. Eng. Chem., 10(1), 161-171.
  27. Lee, Y., Yoon, J., and von Gunten, U. (2005). Spectrophotometric determination of ferrate (Fe(VI)) in water by ABTS, Water Res., 39, 1946-1953. https://doi.org/10.1016/j.watres.2005.03.005
  28. Li, C., Li, X. Z., and Graham, N. (2005). A study of the preparation and reactivity of potassium ferrate, Chemosphere, 61, 537-543. https://doi.org/10.1016/j.chemosphere.2005.02.027
  29. Lim, S.K., Lee, J.E., Lee, H.S., Nam, H.M., Moon, D.C., Jang, G.C., Park, M.J., Jung, Y.G., Jung, S.C., and Wee, S.H. (2014). Trends in antimicrobial sales for livestock and fisheries in Korea during 2003-2012, Korean J. Vet. Res., 54(2), 81-86. https://doi.org/10.14405/kjvr.2014.54.2.81
  30. Liu, H., Pan, X., Chen, J., Qi, Y., Qu, R., and Wang, Z. (2019). Kinetics and mechanism of the oxidative degradation of parathion by Ferrate(VI), Chem. Eng. J., 365, 142-152. https://doi.org/10.1016/j.cej.2019.02.040
  31. Ma, Y., Gao, N., and Li, C. (2012). Degradation and pathway of tetracycline hydrochloride in aqueous solution by potassium ferrate, Environ. Eng. Sci., 29(5), 357-362. https://doi.org/10.1089/ees.2010.0475
  32. Mackulak, T., Birosova, L., Bodik, I., Grabic, R., Takacova, A., Smolinska, M., Hanusova, A., Hives, J., and Galf, M. (2016). Zerovalent iron and iron(VI): Effective means for the removal of psychoactive pharmaceuticals and illicit drugs from wastewaters, Sci. Total Environ., 539, 420-426. https://doi.org/10.1016/j.scitotenv.2015.08.138
  33. Macova, Z., Bouzek, K., Hives, J., Sharma V.K., Terryn, R.J., and Baum, J.C. (2009). Research progress in the electrochemical synthesis of ferrate(VI), Electrochim. Acta, 54(10), 2673-2683. https://doi.org/10.1016/j.electacta.2008.11.034
  34. Manoli, K., Morrison, L.M., Sumarah, M.W., Nakhla, G., Ray, A.K., and Sharma, V.K. (2019). Pharmaceuticals and pesticides in secondary effluent wastewater: Identification and enhanced removal by acid-activated ferrate(VI), Water Res., 148, 272-280. https://doi.org/10.1016/j.watres.2018.10.056
  35. Ministry of Agriculture, Food, and Rural Affairs, Animal and Plant Quarantine Agency, Ministry of Food and Drug Safety. (2018). National monitoring of antibiotic usage and resistance in 2017: Livestock and food of animal origin, 11-1543061-000088-10, Ministry of Agriculture, Food, and Rural Affairs, 9.
  36. Mitsunaga, T., Conner, A.H., and Hill, C.G. (2001). Reaction of formaldehyde with phenols: a computational chemistry study, Wood Adhesives 2000, Forest Products Society, 147-153.
  37. Mohammed-Ali, M.A.J. (2012). Stability study of tetracycline drug in acidic and alkaline solutions by colorimetric method, J. Chem. Pharm., 4(2), 1319-1326.
  38. Pan, M. and Chu, L.M. (2016). Phytotoxicity of veterinary antibiotics to seed germination and root elongation of crops, Ecotox. Environ. Safe., 126, 228-237. https://doi.org/10.1016/j.ecoenv.2015.12.027
  39. Park, K.D. and Kim, I.K. (2016). Development of on-site process for refractory 2,4-dichlorophenol treatment, J. Korean Soc. Pow. Sys. Eng., 20(1), 42-49.
  40. Peings, V., Frayret, J., and Pigot, T. (2015). Mechanism for the oxidation of phenol by sulfatoferrate(VI): Comparison with various oxidants, J. Environ. Manage., 157, 287-296. https://doi.org/10.1016/j.jenvman.2015.04.004
  41. Peings, V., Pigot, T., Baylere, P., Sotiropoulos, J.M., and Frayret, J. (2017). Removal of pharmaceuticals by a potassium ferrate(VI) material: from practical implementation to reactivity prediction, Environ. Sci.: Water Res. Technol., 3, 699-709. https://doi.org/10.1039/C7EW00038C
  42. Phillips, I., Casewell, M., Cox, T., De Groot, B., Friis, C., Jones, R., Nightingale, C., Preston, R., and Waddell, J. (2004). Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data, J. Antimicrob. Chemother., 53, 28-52. https://doi.org/10.1093/jac/dkg483
  43. Prado, N., Ochoa, J., and Amrane, A. (2009). Biodegradation and biosorption of tetracycline and tylosin antibiotics in activated sludge system, Process Biochem., 44(11), 1302-1306. https://doi.org/10.1016/j.procbio.2009.08.006
  44. Regueiro, J., Breidbach, A., and Wenzl, T. (2015). Derivatization of bisphenol A and its analogues with pyridine3-sulfonyl chloride: multivariate optimization and fragmentation patterns by liquid chromatography/Orbitrap mass spectrometry, Rapid Commun. Mass Spectrom., 29, 1473-1484. https://doi.org/10.1002/rcm.7242
  45. Sanli, N., Sanli, S., Ozkan, G., and Denizli, A. (2010). Determination of pKa values of some sulfonamides by LC and LC-PDA methods in acetonitrile-water binary mixtures, J. Braz. Chem. Soc., 21(10), 1952-1960.
  46. Sharma, V.K. (2002). Potassium ferrate(VI): an environmentally friendly oxidant, Adv. Environ. Res., 6, 143-156. https://doi.org/10.1016/S1093-0191(01)00119-8
  47. Sharma, V.K., Kazama, F., Jiangyong, H., and Ray, A.K., (2005). Ferrates (iron(VI) and iron(V)): environmentally friendly oxidants and disinfectants, J. Water Health, 3(1), 45-58. https://doi.org/10.2166/wh.2005.0005
  48. Tasho, R.P. and Cho, J.Y. (2016). Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A review, Sci. Total Environ., 563-564, 366-376. https://doi.org/10.1016/j.scitotenv.2016.04.140
  49. Wagner, W.F., Gurip, J.R., and Hart, E.N. (1952). Factors affecting stability of aqueous potassium ferrate(VI) solutions, Anal. Chem., 24(9), 1497-1498. https://doi.org/10.1021/ac60069a037
  50. Wang, Y., Liu, H., Liu, G., Xie, Y., and Gao, S. (2015). Oxidation of diclofenac by potassium ferrate(VI): Reaction kinetics and toxicity evaluation, Sci. Total Environ., 506-507, 252-258. https://doi.org/10.1016/j.scitotenv.2014.10.114
  51. Wang, H., Liu, Y., and Jiang, J.Q. (2016). Reaction kinetics and oxidation product formation in the degradation of acetaminophen by ferrate (VI), Chemosphere, 155, 583-590. https://doi.org/10.1016/j.chemosphere.2016.04.088
  52. Wu, K., Wang, H., Zhou, C., Amina, Y., and Si, Y. (2018). Efficient oxidative removal of sulfonamide antibiotics from the wastewater by potassium ferrate, J. Adv. Oxid. Technol., 21(1). https://doi.org/10.26802/jaots.2017.0038
  53. Yang, B., Ying, G.G., Zhang, L.J., Zhou, L.J., Liu, S., and Fang, Y.X. (2011). Kinetics modeling and reaction mechanism of ferrate(VI) oxidation of benzotriazoles, Water Res., 45(6), 2261-2269. https://doi.org/10.1016/j.watres.2011.01.022
  54. Yang, B., Ying, G.G., Zhao, J.L., Liu, S., Zhou, L.J., and Chen, F. (2012). Removal of selected endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) during ferrate(VI) treatment of secondary wastewater effluents, Water Res., 46(7), 2194-2204. https://doi.org/10.1016/j.watres.2012.01.047
  55. Yang, B., Ying, G.G., Chen, Z.F., Zhao, J.L., Peng, F.Q., and Chen, X.W. (2014). Ferrate(VI) oxidation of tetrabromobisphenol A in comparison with bisphenol A, Water Res., 62(1), 211-219. https://doi.org/10.1016/j.watres.2014.05.056
  56. Yang, S. and Doong, R. (2008). Preparation of potassium ferrate for the degradation of tetracycline, ACS Symp. Ser. 985, 405-419.
  57. Yang, Y., Zeng, Z., Zhang, C., Huang, D., Zeng, G., Xiao, R., Lai, C., Zhou, C., Guo, H., Xue, W., Cheng, M., Wang, W., and Wang, J. (2018). Construction of iodine vacancy-rich BiOIAg@AgI Z-scheme heterojunction photocatalysts for visible-light-driven tetracycline degradation Transformation pathways and mechanism insight, Chem. Eng. J., 349, 808-821. https://doi.org/10.1016/j.cej.2018.05.093
  58. Zhang, P., Zhang, G., Dong, J., Fan, M., and Zeng, G. (2012). Bisphenol A oxidative removal by ferrate (Fe(VI)) under a weak acidic condition, Sep. Purif. Technol., 84(9), 46-51. https://doi.org/10.1016/j.seppur.2011.06.022
  59. Zhou, Z. and Jiang, J.Q. (2015a). Treatment of selected pharmaceuticals by ferrate(VI): Performance, kinetic studies and identification of oxidation products, J. Pharmaceut. Biomed., 106(15), 37-45. https://doi.org/10.1016/j.jpba.2014.06.032
  60. Zhou, Z. and Jiang, J.Q. (2015b). Reaction kinetics and oxidation products formation in the degradation of ciprofloxacin and ibuprofen by ferrate(VI), Chemosphere, 119, S95-S100. https://doi.org/10.1016/j.chemosphere.2014.04.006
  61. Zhu, X.D., Wang, Y.J., Sun, R.J., and Zhou, D.M. (2013). Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2, Chemosphere, 92(8), 925-932. https://doi.org/10.1016/j.chemosphere.2013.02.066