DOI QR코드

DOI QR Code

Investigation of the Fungal Diversity of the Federated States of Micronesia and the Construction of an Updated Fungal Inventory

  • Park, Myung Soo (School of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Yoo, Shinnam (School of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Cho, Yoonhee (School of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Park, Ki Hyeong (School of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Kim, Nam Kyu (Department of Forest Healing, College of Humanservice, Catholic Kwandong University) ;
  • Lee, Hyi-Seung (Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology) ;
  • Lim, Young Woon (School of Biological Sciences and Institute of Microbiology, Seoul National University)
  • Received : 2021.08.19
  • Accepted : 2021.11.25
  • Published : 2021.12.31

Abstract

The Federated States of Micronesia (FSM) is an island country in the western Pacific and is a known biodiversity hotspot. However, a relatively small number of fungi (236 species) have been reported till July 2021. Since fungi play major ecological roles in ecosystems, we investigated the fungal diversity of FSM from various sources over 2016 and 2017 and constructed a local fungal inventory, which also included the previously reported species. Fruiting bodies were collected from various host trees and fungal strains were isolated from marine and terrestrial environments. A total of 99 species, of which 78 were newly reported in the FSM, were identified at the species level using a combination of molecular and morphological approaches. Many fungal species were specific to the environment, host, or source. Upon construction of the fungal inventory, 314 species were confirmed to reside in the FSM. This inventory will serve as an important basis for monitoring fungal diversity and identifying novel biological resources in FSM.

Keywords

Acknowledgement

We are grateful to the Chuuk and Kosrae State Government, the Federated States of Micronesia, for allowing marine organism research.

References

  1. GBIF. GBIF Home Page; 2021. Available from: https://www.gbif.org
  2. New Zealand Fungarium - Te Kohinga Hekaheka o Aotearoa (PDD) 2021. Specimen data. Accessed through Systematics Collection Data. Available from: http://scd.landcareresearch.co.nz
  3. Aime MC, Kijpornyongpan T, Abbasi M, et al. A new species of Cintractiella (Ustilaginales) from the volcanic island of Kosrae, Caroline Islands, Micronesia. MC. 2018;42:1-6. https://doi.org/10.3897/mycokeys.42.27231
  4. Cannon P, Klopfenstein NB, Kim M-S, et al. Characterizing forest root-and butt-rot fungi in Yap, Palau, Pohnpei, Kosrae, Guam and Saipan. In: Cannon P, editor. Forest pathology in Yap, Palau, Pohnpei, Kosrae, Guam and Saipan, Sep 2013. Vallejo, CA: US Department of Agriculture, Forest Service, Region 5, Forest Health Protection; 2014. p. 38-49.
  5. Diaz-Valderrama JR, Nguyen HD, Aime MC. Wallemia peruviensis sp. nov., a new xerophilic fungus from an agricultural setting in South America. Extremophiles. 2017;21(6):1017-1025. https://doi.org/10.1007/s00792-017-0960-0
  6. Dixon LJ, Schlub RL, Pernezny K, et al. Host specialization and phylogenetic diversity of Corynespora cassiicola. Phytopathology. 2009;99(9):1015-1027. https://doi.org/10.1094/PHYTO-99-9-1015
  7. Gilbert GS, Gorospe J, Ryvarden L. Host and habitat preferences of polypore fungi in Micronesian tropical flooded forests. Mycol Res. 2008;112(Pt 6):674-680. https://doi.org/10.1016/j.mycres.2007.11.009
  8. Gonz alez-Ball R, Ono Y. Rust fungi (Uredinales) found in Marshall Islands and Pohnpei. Mycoscience. 1998;39(2):221-222. https://doi.org/10.1007/BF02464064
  9. Hirooka Y, Tanney JB, Nguyen HD, et al. Xerotolerant fungi in house dust: taxonomy of Spiromastix, Pseudospiromastix and Sigleria gen. nov. in Spiromastigaceae (Onygenales, Eurotiomycetes). Mycologia. 2016;108(1):135-156. https://doi.org/10.3852/15-065
  10. McKenzie EH, Jackson GV. The fungi, bacteria and pathogenic algae of the Federated States of Micronesia. Technical Papers. South Pacific Commission. 1990.
  11. Miyazaki Y, Hiraide M, Shibuya H. Molecular cloning of functional genes for high growth-temperature and salt tolerance of the basidiomycete Fomitopsis pinicola isolated in a mangrove Forest in Micronesia. Biosci Biotechnol Biochem. 2007;71(1):273-278. https://doi.org/10.1271/bbb.60483
  12. Nguyen HD, Jancic S, Meijer M, et al. Application of the phylogenetic species concept to Wallemia sebi from house dust and indoor air revealed by multi-locus genealogical concordance. PLOS One. 2015;10(3):e0120894. https://doi.org/10.1371/journal.pone.0120894
  13. Redecker D, Raab P, Oehl F, et al. A novel clade of sporocarp-forming species of glomeromycotan fungi in the Diversisporales lineage. Mycol Prog. 2007;6(1):35-44. https://doi.org/10.1007/s11557-007-0524-2
  14. Stewart J, Kim M-S, Ota Y, et al. Phylogenetic and population genetic analyses reveal three distinct lineages of the invasive brown root-rot pathogen, Phellinus noxius, and bioclimatic modeling predicts differences in associated climate niches. Eur J Plant Pathol. 2020;156(3):751-766. https://doi.org/10.1007/s10658-019-01926-5
  15. Tanney JB, Nguyen HD, Pinzari F, et al. A century later: rediscovery, culturing and phylogenetic analysis of Diploospora rosea, a rare onygenalean hyphomycete. Antonie Van Leeuwenhoek. 2015;108(5):1023-1035. https://doi.org/10.1007/s10482-015-0555-7
  16. Tanney JB, Visagie CM, Yilmaz N, et al. Aspergillus subgenus Polypaecilum from the built environment. Stud Mycol. 2017;88:237-267. https://doi.org/10.1016/j.simyco.2017.11.001
  17. Visagie CM, Hirooka Y, Tanney JB, et al. Aspergillus, Penicillium and Talaromyces isolated from house dust samples collected around the world. Stud Mycol. 2014;78:63-139. https://doi.org/10.1016/j.simyco.2014.07.002
  18. Wong M-H, Crous PW, Henderson J, et al. Phyllosticta species associated with freckle disease of banana. Fungal Divers. 2012;56(1):173-187. https://doi.org/10.1007/s13225-012-0182-9
  19. Woudenberg JHC, Meijer M, Houbraken J, et al. Scopulariopsis and scopulariopsis-like species from indoor environments. Stud Mycol. 2017;88:1-35. https://doi.org/10.1016/j.simyco.2017.03.001
  20. Hawksworth DL. The fungal dimension of biodiversity - magnitude, significance, and conservation. Mycol Res. 1991;95(6):641-655. https://doi.org/10.1016/s0953-7562(09)80810-1
  21. Carlile MJ, Watkinson SC, Gooday GW. The fungi. 2nd ed. San Diego, CA: Elsevier-Academic Press; 2001.
  22. Gilbertson RL, Ryvarden L. North American polypores. Vol. 1. Abortiporus-Lindtneria. North american polypores. Oslo: Fungiflora A/S; 1986.
  23. Breitenbach J, Kranzlin F. Fungi of Switzerland. Vol. 1, Ascomycetes. 1984; Lucerne: Verlag Mykologia.
  24. Breitenbach J, Kranzlin F. Fungi of Switzerland, vol. 2, non-gilled fungi. Lucerne: Verlag Mykologia; 1986.
  25. Breitenbach J, Kranzlin F. Fungi of Switzerland, vol. 3, agarics 1st part. Lucerne: Verlag Mykologia; 1991.
  26. Breitenbach J, Kranzlin F. Fungi of Switzerland, vol. 4, agarics 2nd part. Lucerne: Verlag Mykologia; 1995.
  27. Breitenbach J, Kranzlin F. Fungi of Switzerland, vol. 5, agarics 3rd part. Lucerne: Verlag Mykologia; 2000.
  28. Rogers SO, Bendich AJ. Extraction of total cellular DNA from plants, algae and fungi. In: Gelvin SB, Schilperoort RA, editors. Plant molecular biology manual. Dordrecht: Springer; 1994. p. 183-190.
  29. Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts . Mol Ecol. 1993;2(2):113-118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
  30. White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: a Guide to Methods and Applications. 1990;18(1):315-322.
  31. Peterson SW, Vega FE, Posada F, et al. Penicillium coffeae, a new endophytic species isolated from a coffee plant and its phylogenetic relationship to P. fellutanum, P. thiersii and P. brocae based on parsimony analysis of multilocus DNA sequences. Mycologia. 2005;97(3):659-666. https://doi.org/10.1080/15572536.2006.11832796
  32. Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol. 1995;61(4):1323-1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995
  33. O'Donnell K, Kistler HC, Cigelnik E, et al. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc Natl Acad Sci. 1998;95(5):2044-2049. https://doi.org/10.1073/pnas.95.5.2044
  34. Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731-2739. https://doi.org/10.1093/molbev/msr121
  35. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772-780. https://doi.org/10.1093/molbev/mst010
  36. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16(2):111-120. https://doi.org/10.1007/BF01731581
  37. Raja HA, Miller AN, Pearce CJ, et al. Fungal identification using molecular tools: a primer for the natural products research community. J Nat Prod. 2017;80(3):756-770. https://doi.org/10.1021/acs.jnatprod.6b01085
  38. Slepecky RA, Starmer WT. Phenotypic plasticity in fungi: a review with observations on Aureobasidium pullulans. Mycologia. 2009;101(6):823-832. https://doi.org/10.3852/08-197
  39. Marin-Felix Y, Groenewald J, Cai L, et al. Genera of phytopathogenic fungi: GOPHY 1. Stud Mycol. 2017;86:99-216. https://doi.org/10.1016/j.simyco.2017.04.002
  40. Hofstetter V, Buyck B, Eyssartier G, et al. The unbearable lightness of sequenced-based identification. Fungal Divers. 2019;96(1):243-284. https://doi.org/10.1007/s13225-019-00428-3
  41. Hibbett D, Abarenkov K, K~oljalg U, et al. Sequence-based classification and identification of fungi. Mycologia. 2016;108(6):1049-1068.
  42. Baakza A, Vala A, Dave B, et al. A comparative study of siderophore production by fungi from marine and terrestrial habitats. J Exp Mar Biol Ecol. 2004;311(1):1-9. https://doi.org/10.1016/j.jembe.2003.12.028
  43. Dini-Andreote F, Pylro VS, Baldrian P, et al. Ecological succession reveals potential signatures of marine-terrestrial transition in salt marsh fungal communities. ISME J. 2016;10(8):1984-1997. https://doi.org/10.1038/ismej.2015.254
  44. Park MS, Lee JW, Kim SH, et al. Penicillium from rhizosphere soil in terrestrial and coastal environments in South Korea. Mycobiology. 2020;48(6):431-442. https://doi.org/10.1080/12298093.2020.1823611
  45. Godinho VM, de Paula MTR, Silva DAS, et al. Diversity and distribution of hidden cultivable fungi associated with marine animals of Antarctica. Fungal Biol. 2019;123(7):507-516. https://doi.org/10.1016/j.funbio.2019.05.001
  46. Park MS, Oh S-Y, Fong JJ, et al. The diversity and ecological roles of Penicillium in intertidal zones. Sci Rep. 2019;9(1):1-11. https://doi.org/10.1038/s41598-018-37186-2
  47. Picard KT. Coastal marine habitats harbor novel early-diverging fungal diversity. Fungal Ecol. 2017;25:1-13. https://doi.org/10.1016/j.funeco.2016.10.006
  48. Cheng M-J, Wu M-D, Chen J-J, et al. Secondary metabolites from the endophytic fungus Annulohypoxylon stygium BCRC 34024. Chem Nat Compd. 2014;50(2):237-241. https://doi.org/10.1007/s10600-014-0921-0
  49. Robl D, dos Santos Costa P, Buchli F, et al. Enhancing of sugar cane bagasse hydrolysis by Annulohypoxylon stygium glycohydrolases. Bioresour Technol. 2015;177:247-254. https://doi.org/10.1016/j.biortech.2014.11.082
  50. Deng Y, van Peer AF, Lan F-S, et al. Morphological and molecular analysis identifies the associated fungus ("xianghui") of the medicinal white jelly mushroom, Tremella fuciformis, as Annulohypoxylon stygium. Int J Med Mushrooms. 2016;18(3):253-260. https://doi.org/10.1615/intjmedmushrooms.v18.i3.80
  51. Maciel OMC, Tavares RSN, Caluz DRE, et al. Photoprotective potential of metabolites isolated from algae-associated fungi Annulohypoxylon stygium. J Photochem Photobiol B. 2018;178:316-322. https://doi.org/10.1016/j.jphotobiol.2017.11.018