DOI QR코드

DOI QR Code

Biodiversity and Enzyme Activity of Marine Fungi with 28 New Records from the Tropical Coastal Ecosystems in Vietnam

  • Pham, Thu Thuy (Institute of Biotechnology and Environment, Nha Trang University) ;
  • Dinh, Khuong V. (Institute of Aquaculture, Nha Trang University) ;
  • Nguyen, Van Duy (Institute of Biotechnology and Environment, Nha Trang University)
  • Received : 2021.04.28
  • Accepted : 2021.11.15
  • Published : 2021.12.31

Abstract

The coastal marine ecosystems of Vietnam are one of the global biodiversity hotspots, but the biodiversity of marine fungi is not well known. To fill this major gap of knowledge, we assessed the genetic diversity (ITS sequence) of 75 fungal strains isolated from 11 surface coastal marine and deeper waters in Nha Trang Bay and Van Phong Bay using a culture-dependent approach and 5 OTUs (Operational Taxonomic Units) of fungi in three representative sampling sites using next-generation sequencing. The results from both approaches shared similar fungal taxonomy to the most abundant phylum (Ascomycota), genera (Candida and Aspergillus) and species (Candida blankii) but were different at less common taxa. Culturable fungal strains in this study belong to 3 phyla, 5 subdivisions, 7 classes, 12 orders, 17 families, 22 genera and at least 40 species, of which 29 species have been identified and several species are likely novel. Among identified species, 12 and 28 are new records in global and Vietnamese marine areas, respectively. The analysis of enzyme activity and the checklist of trophic mode and guild assignment provided valuable additional biological information and suggested the ecological function of planktonic fungi in the marine food web. This is the largest dataset of marine fungal biodiversity on morphology, phylogeny and enzyme activity in the tropical coastal ecosystems of Vietnam and Southeast Asia. Biogeographic aspects, ecological factors and human impact may structure mycoplankton communities in such aquatic habitats.

Keywords

Acknowledgement

The authors would like to acknowledge Tran Chau Loan, Nguyen Minh Tan and Huynh Ngo Y Nhi at Nha Trang University (NTU) for technical and sampling support, and Prof. Doan Nhu Hai at Institute of Oceanography (IO), Vietnam for deepwater sampling support.

References

  1. Selig ER, Turner WR, Troeng S, et al. Global priorities for marine biodiversity conservation. PLoS One. 2014;9(1):e82898. https://doi.org/10.1371/journal.pone.0082898
  2. Yao Y, Wang J, Yin J. Marine heatwaves in China's marginal seas and adjacent offshore waters: past, present, and future. J Geophys Res Oceans. 2020;125:e2019.
  3. Dinh KV. Vietnam's fish kill remains unexamined. Science. 2019;365:333. https://doi.org/10.1126/science.aay6007
  4. Halpern BS, Frazier M, Afflerbach J, et al. Recent pace of change in human impact on the world's ocean. Sci Rep. 2019;9(1):11609. https://doi.org/10.1038/s41598-019-47201-9
  5. Jambeck JR, Geyer R, Wilcox C, et al. Marine pollution. Plastic waste inputs from land into the ocean. Science. 2015;347(6223):768-771. https://doi.org/10.1126/science.1260352
  6. Nghia ND, Lunestad BT, Trung TS, et al. Heavy metals in the farming environment and in some selected aquaculture species in the Van Phong Bay and Nha Trang Bay of the Khanh Hoa province in Vietnam. Bull Environ Contam Toxicol. 2009;82(1):75-79. https://doi.org/10.1007/s00128-008-9561-z
  7. Nguyen X-V, Tran M-H, Le T-D, et al. An assessment of heavy metal contamination on the surface sediment of seagrass beds at the Khanh Hoa Coast, Vietnam. Bull Environ Contam Toxicol. 2017;99(6):728-734. https://doi.org/10.1007/s00128-017-2191-6
  8. Dinh KV, Nguyen QTT, Vo T-M-C, et al. Interactive effects of extreme temperature and a widespread coastal metal contaminant reduce the fitness of a common tropical copepod across generations. Mar Pollut Bull. 2020;159:111509. https://doi.org/10.1016/j.marpolbul.2020.111509
  9. Amend A, Burgaud G, Cunliffe M, et al. Fungi in the marine environment: Open questions and unsolved problems. mBio. 2019;10(2):e01189-18.
  10. Manohar CS, Raghukumar C. Fungal diversity from various marine habitats deduced through culture-independent studies. FEMS Microbiol Lett. 2013;341(2):69-78. https://doi.org/10.1111/1574-6968.12087
  11. Worm B, Barbier EB, Beaumont N, et al. Impacts of biodiversity loss on ocean ecosystem services. Science. 2006;314(5800):787-790. https://doi.org/10.1126/science.1132294
  12. Zaky AS, Greetham D, Louis EJ, et al. A new isolation and evaluation method for marine-derived yeast spp. with potential applications in industrial biotechnology. J Microbiol Biotechnol. 2016;26(11):1891-1907. https://doi.org/10.4014/jmb.1605.05074
  13. Chen L, Li Y-P, Li X-X, et al. Isolation of 4,4'-bond secalonic acid D from the marine-derived fungus Penicillium oxalicum with inhibitory property against hepatocellular carcinoma. J Antibiot. 2019;72(1):34-44. https://doi.org/10.1038/s41429-018-0104-5
  14. Nguyen TH, Nguyen VD. Characterization and applications of marine microbial enzymes in biotechnology and probiotics for animal health. Adv Food Nutr Res. 2017;80:37-74. https://doi.org/10.1016/bs.afnr.2016.11.007
  15. Rai M, Gade A, Zimowska B, et al. Marinederived phoma - the gold mine of bioactive compounds. Appl Microbiol Biotechnol. 2018;102(21):9053-9066. https://doi.org/10.1007/s00253-018-9329-2
  16. Tang R, Kimishima A, Ishida R, et al. Selective cytotoxicity of epidithiodiketopiperazine DC1149B, produced by marine-derived Trichoderma lixii on the cancer cells adapted to glucose starvation. J Nat Med. 2020;74(1):153-158. https://doi.org/10.1007/s11418-019-01357-w
  17. Pang K-L, Overy DP, Jones EBG, et al. Marine fungi' and 'marine-derived fungi' in natural product chemistry research: toward a new consensual definition. Fungal Biol Rev. 2016;30(4):163-175. https://doi.org/10.1016/j.fbr.2016.08.001
  18. Jones EBG, Suetrong S, Sakayaroj J, et al. Classification of marine ascomycota, basidiomycota, blastocladiomycota and chytridiomycota. Fungal Divers. 2015;73(1):1-72. https://doi.org/10.1007/s13225-015-0339-4
  19. Spatafora JW, Chang Y, Benny GL, et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia. 2016;108(5):1028-1046. https://doi.org/10.3852/16-042
  20. Gadanho M, Almeida JM, Sampaio JP. Assessment of yeast diversity in a marine environment in the South of Portugal by microsatellite-primed PCR. Antonie Van Leeuwenhoek. 2003;84(3):217-227. https://doi.org/10.1023/A:1026038213195
  21. Chen YS, Yanagida F, Chen LY. Isolation of marine yeasts from coastal waters of northeastern Taiwan. Aquat Biol. 2009;8:55-60. https://doi.org/10.3354/ab00207
  22. Cathrine SJ, Raghukumar C. Anaerobic denitrification in fungi from the coastal marine sediments off Goa, India. Mycol Res. 2009;113(1):100-109. https://doi.org/10.1016/j.mycres.2008.08.009
  23. Gutierrez MH, Pantoja S, Quinones RA. First record of filamentous fungi in the coastal upwelling ecosystem off Central Chile. Gayana. 2010;74:66-73.
  24. Cury JC, Araujo FV, Coelho-Souza SA, et al. Microbial diversity of a Brazilian coastal region influenced by an upwelling system and anthropogenic activity. PLoS One. 2011;6(1):e16553. https://doi.org/10.1371/journal.pone.0016553
  25. Arfi Y, Marchand C, Wartel M, et al. Fungal diversity in anoxic-sulfidic sediments in a mangrove soil. Fung Ecol. 2012;5(2):282-285. https://doi.org/10.1016/j.funeco.2011.09.004
  26. Li L, Singh P, Liu Y, et al. Diversity and biochemical features of culturable fungi from the coastal waters of Southern China. AMB Express. 2014;4:60. https://doi.org/10.1186/s13568-014-0060-9
  27. Wang Y, Sen B, He Y. Spatiotemporal distribution and assemblages of planktonic fungi in the coastal waters of the Bohai Sea. Front Microbiol. 2018;9:584. https://doi.org/10.3389/fmicb.2018.00584
  28. Richards TA, Leonard G, Mahe F, et al. Molecular diversity and distribution of marine fungi across 130 European environmental samples. Proc R Soc B. 2015;282(1819):20152243. https://doi.org/10.1098/rspb.2015.2243
  29. Balabanova L, Slepchenko L, Son O, et al. Biotechnology potential of marine fungi degrading plant and algae polymeric substrates. Front Microbiol. 2018;9:1527. https://doi.org/10.3389/fmicb.2018.01527
  30. Borovec O, Vohnik M. Ontogenetic transition from specialized root hairs to specific root-fungus symbiosis in the dominant mediterranean seagrass Posidonia oceanica. Sci Rep. 2018;8(1):10773. https://doi.org/10.1038/s41598-018-28989-4
  31. Borzykh OG, Zvereva LV. Mycobiota of the giant oyster, Crassostrea gigas (Thunberg, 1787) (Bivalvia), from the Peter the Great Bay, Sea of Japan. Microbiology. 2012;81(1):109-111. https://doi.org/10.1134/S0026261712010031
  32. Bovio E, Garzoli L, Poli A, et al. The culturable mycobiota associated with three Atlantic sponges, including two new species: Thelebolus balaustiformis and T. spongiae. Fungal Syst Evol. 2018;1:141-167. https://doi.org/10.3114/fuse.2018.01.07
  33. Gao Z, Johnson ZI, Wang G. Molecular characterization of the spatial diversity and novel lineages of mycoplankton in Hawaiian coastal waters. ISME J. 2010;4(1):111-120. https://doi.org/10.1038/ismej.2009.87
  34. Gao Z, Li BL, Zheng CC, et al. Molecular detection of fungal communities in the Hawaiian marine sponges Suberites zeteki and Mycale armata. Appl Environ Microbiol. 2008;74(19):6091-6101. https://doi.org/10.1128/AEM.01315-08
  35. King GM, Judd C, Kuske CR, et al. Analysis of stomach and gut microbiomes of the Eastern oyster (Crassostrea virginica) from coastal Louisiana, USA. PLoS One. 2012;7(12):e51475. https://doi.org/10.1371/journal.pone.0051475
  36. Scholz B, Guillou L, Marano AV, et al. Zoosporic parasites infecting marine diatoms - a black box that needs to be opened. Fungal Ecol. 2016;19:59-76. https://doi.org/10.1016/j.funeco.2015.09.002
  37. Bass D, Howe A, Brown N, et al. Yeast forms dominate fungal diversity in the deep oceans. Proc Biol Sci. 2007;274(1629):3069-3077.
  38. Burgaud G, Hue NTM, Arzur D, et al. Effects of hydrostatic pressure on yeasts isolated from deep-sea hydrothermal vents. Res Microbiol. 2015;166(9):700-709. https://doi.org/10.1016/j.resmic.2015.07.005
  39. Damare S, Raghukumar C, Raghukumar S. Fungi in deep-sea sediments of the Central indian basin. Deep Sea Res Part I Oceanogr Res Pap. 2006;53(1):14-27. https://doi.org/10.1016/j.dsr.2005.09.005
  40. Lai X, Cao L, Tan H, et al. Fungal communities from methane hydrate-bearing deep-sea marine sediments in South China Sea. ISME J. 2007;1(8):756-762. https://doi.org/10.1038/ismej.2007.51
  41. Singh P, Raghukumar C, Verma P, et al. Phylogenetic diversity of culturable fungi from the deep-sea sediments of the Central Indian Basin and their growth characteristics. Fung Divers. 2010;40(1):89-102. https://doi.org/10.1007/s13225-009-0009-5
  42. Singh P, Raghukumar C, Meena RM, et al. Fungal diversity in deep-sea sediments revealed by culture-dependent and culture-independent approaches. Fungal Ecol. 2012;5(5):543-553. https://doi.org/10.1016/j.funeco.2012.01.001
  43. Nguyen AD, Zhao J-X, Feng Y-X, et al. Impact of recent coastal development and human activities on Nha Trang Bay, Vietnam: evidence from a Porites lutea geochemical record. Coral Reefs. 2013;32(1):181-193. https://doi.org/10.1007/s00338-012-0962-4
  44. Nguyen KAT, Nguyen TAT, Jolly C, et al. Economic efficiency of extensive and intensive shrimp production under conditions of disease and natural disaster risks in Khanh Hoa and Tra Vinh provinces, Vietnam. Sustainability. 2020;12(5):2140. https://doi.org/10.3390/su12052140
  45. Nguyen VD, Le MH, Trang ST. Application of probiotics from marine microbes for sustainable marine aquaculture development. In: Kim SK, editor. Marine microbiology: bioactive compounds and biotechnological applications. Weinheim: Wiley-VCH; 2013. p. 307-349.
  46. Nguyen VD, Pham TT, Nguyen THT, et al. Screening of marine bacteria with bacteriocin-like activities and probiotic potential for ornate spiny lobster (Panulirus ornatus) juveniles. Fish Shellfish Immunol. 2014;40(1):49-60. https://doi.org/10.1016/j.fsi.2014.06.017
  47. Harju S, Fedosyuk H, Peterson KR. Rapid isolation of yeast genomic DNA: Bust n' Grab. BMC Biotechnol. 2004;4:8. https://doi.org/10.1186/1472-6750-4-8
  48. Toju H, Tanabe AS, Yamamoto S, et al. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS One. 2012;7(7):e40863. https://doi.org/10.1371/journal.pone.0040863
  49. White TJ, Bruns TD, Lee SB. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. New York: Academic Press; 1990. p. 315-322.
  50. Pham TT, Ho THN, Nguyen VD. Screening for bacteriocin-like antimicrobial activity against shrimp pathogenic vibrios and molecular identification of marine bacteria from otter clam Lutraria philippinarum. Thai J Vet Med. 2014;1:345-353.
  51. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792-1797. https://doi.org/10.1093/nar/gkh340
  52. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95-98.
  53. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406-425.
  54. Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547-1549. https://doi.org/10.1093/molbev/msy096
  55. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16(2):111-120. https://doi.org/10.1007/BF01731581
  56. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39(4):783-791. https://doi.org/10.2307/2408678
  57. Magoc T, Salzberg S. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27(21):2957-2963. https://doi.org/10.1093/bioinformatics/btr507
  58. Li W, Fu L, Niu B, et al. Ultrafast clustering algorithms for metagenomic sequence analysis. Brief Bioinform. 2012;13(6):656-668. https://doi.org/10.1093/bib/bbs035
  59. Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335-336. https://doi.org/10.1038/nmeth.f.303
  60. Nilsson RH, Larsson K-H, Taylor AFS, et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019;47(D1):D259-D264. https://doi.org/10.1093/nar/gky1022
  61. Ben Mefteh F, Frikha F, Daoud A, et al. Response surface methodology optimization of an acidic protease produced by Penicillium bilaiae isolate TDPEF30, a newly recovered endophytic fungus from healthy roots of date palm trees (Phoenix dactylifera L.). Microorganisms. 2019;7(3):74. https://doi.org/10.3390/microorganisms7030074
  62. Monga M, Goyal M, Kl K. Production and stabilization of amylases from Aspergillus niger. Mycosphere. 2011;2:129-134.
  63. Qasim SS, Shakir KA, Al-Shaibani AB. Isolation, screening and production of phytate degrading enzyme (phytase) from local fungal isolate. Iraqi J Agric Sci. 2016;47:121-128.
  64. Coniglio RO, Fonseca MI, Villalba LL, et al. Screening of new secretory cellulases from different supernatants of white rot fungi from Misiones, Argentina. Mycology. 2017;8(1):1-10. https://doi.org/10.1080/21501203.2016.1267047
  65. Abu-Tahon MA, Isaac GS. Anticancer and antifungal efficiencies of purified chitinase produced from Trichoderma viride under submerged fermentation. J Gen Appl Microbiol. 2020;66(1):32-40. https://doi.org/10.2323/jgam.2019.04.006
  66. Nguyen NH, Song Z, Bates ST, et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241-248. https://doi.org/10.1016/j.funeco.2015.06.006
  67. Farr DF, Rossman AY. 2020. Fungal databases, U.S. National Fungus Collections, ARS, USDA [cited 2020 September 15]. Available from: https://nt.ars-grin.gov/fungaldatabases
  68. Smith ME, Douhan GW, Rizzo DM. Intra-specific and intra-sporocarp ITS variation of ectomycorrhizal fungi as assessed by rDNA sequencing of sporocarps and pooled ectomycorrhizal roots from a Quercus woodland. Mycorrhiza. 2007;18(1):15-22. https://doi.org/10.1007/s00572-007-0148-z
  69. Vu TD, Groenewald M, de Vries M, et al. Largescale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom Fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud Mycol. 2019;92:135-154. https://doi.org/10.1016/j.simyco.2018.05.001
  70. Nguyen VD, Pham TT. 2021. Penicillium vietnamense sp. nov., the first novel marine fungi species described from Vietnam with a unique conidiophore structure and molecular phylogeny of Penicillium section Charlesia (submitted in parallel to Mycobiology).
  71. Nhi Cong LT, Ngoc Mai CT, Thanh VT, et al. Application of a biofilm formed by a mixture of yeasts isolated in Vietnam to degrade aromatic hydrocarbon polluted wastewater collected from petroleum storage. Water Sci Technol. 2014;70(2):329-336. https://doi.org/10.2166/wst.2014.233
  72. Nguyen TTG, Nguyen TC, Leelakriangsak M. Promotion of Lactobacillus plantarum on growth and resistance against acute hepatopancreatic necrosis disease pathogens in white-leg shrimp (Litopenaeus vannamei). Thai J Vet Med. 2018;48:19-28.
  73. Quach TKN. Assessing the value of coral reefs in the face of climate change: the evidence from nha trang Bay. Vietnam. Ecosyst Serv. 2019;35:99-108. https://doi.org/10.1016/j.ecoser.2018.11.008
  74. Kimura H, Naganuma T. Thraustochytrids: a neglected agent of the marine microbial food chain. Aquat Ecosyst Health Manag. 2001;4(1):13-18. https://doi.org/10.1080/146349801753569243
  75. Kimura H, Sato M, Sugiyama C, et al. Coupling of thraustochytrids and POM, and of bacterioand phytoplankton in a semi-enclosed coastal area: implication for different substrate preference by the planktonic decomposers. Aquat Microb Ecol. 2001;25:293-300. https://doi.org/10.3354/ame025293
  76. Richards TA, Jones MDM, Leonard G, et al. Marine fungi: their ecology and molecular diversity. Ann Rev Mar Sci. 2012;4:495-522. https://doi.org/10.1146/annurev-marine-120710-100802
  77. Downs CA, Kramarsky-Winter E, Segal R, et al. Toxicopathological effects of the sunscreen UV filter, oxybenzone (benzophenone-3), on coral planulae and cultured primary cells and its environmental contamination in Hawaii and the U.S. Virgin in islands. Arch Environ Contam Toxicol. 2016;70(2):265-288. https://doi.org/10.1007/s00244-015-0227-7
  78. Comeau AM, Vincent WF, Bernier L, et al. Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats. Sci Rep. 2016;6:30120. https://doi.org/10.1038/srep30120
  79. Grossart H-P, Wurzbacher C, James TY, et al. Discovery of dark matter fungi in aquatic ecosystems demands a reappraisal of the phylogeny and ecology of zoosporic fungi. Fungal Ecol. 2016;19:28-38. https://doi.org/10.1016/j.funeco.2015.06.004
  80. Schoch CL, Seifert KA, Huhndorf S, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci USA. 2012;109(16):6241-6246. https://doi.org/10.1073/pnas.1117018109
  81. Ward DM, Weller R, Bateson MM. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature. 1990; 345(6270):63-65. https://doi.org/10.1038/345063a0
  82. Sneath PH, Sokal RR. 1973. Numerical taxonomy. The principles and practice of numerical classification. San Francisco: Freeman WH.
  83. Taylor JW, Jacobson DJ, Kroken S, et al. Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol. 2000;31(1):21-32. https://doi.org/10.1006/fgbi.2000.1228
  84. Houbraken J, Kocsube S, Visagie CM, et al. Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): an overview of families, genera, subgenera, sections, series and species. Stud Mycol. 2020;95:5-169. https://doi.org/10.1016/j.simyco.2020.05.002
  85. Barrett K, Jensen K, Meyer AS, et al. Fungal secretome profile categorization of CAZymes by function and family corresponds to fungal phylogeny and taxonomy: Example Aspergillus and penicillium. Sci Rep. 2020;10(1):5158. https://doi.org/10.1038/s41598-020-61907-1
  86. Danovaro R, Pusceddu A. Biodiversity and ecosystem functioning in coastal lagoons: does microbial diversity play any role? Estuar Coast Shelf Sci. 2007;75(1-2):4-12. https://doi.org/10.1016/j.ecss.2007.02.030
  87. Strom SL. Microbial ecology of ocean biogeochemistry: a community perspective. Science. 2008;320(5879):1043-1045. https://doi.org/10.1126/science.1153527
  88. Damare SR, Nagarajan M, Raghukumar C. Spore germination of fungi belonging to Aspergillus species under deep-sea conditions. Deep Sea Res Part I Oceanogr Res Pap. 2008;55(5):670-678. https://doi.org/10.1016/j.dsr.2008.02.004
  89. Schauer F, Hanschke R. Taxonomy and ecology of the genus Candida. Mycoses. 1999;42(S1):12-21. https://doi.org/10.1111/j.1439-0507.1999.tb04521.x
  90. Sandhu DK, Waraich MK. Yeasts associated with pollinating bees and flower nectar. Microb Ecol. 1985;11(1):51-58. https://doi.org/10.1007/BF02015108
  91. Irinyi L, Serena C, Garcia-Hermoso D, et al. International Society of Human and Animal Mycology (ISHAM) - ITS reference DNA barcoding database-the quality controlled standard tool for routine identification of human and animal pathogenic fungi. Med Mycol. 2015;53(4):313-337. https://doi.org/10.1093/mmy/myv008
  92. Buckley HR, van Uden N. Five new Candida species. Mycopathol Mycol Appl. 1968;36(3):257-266. https://doi.org/10.1007/BF02050372
  93. Zaragoza S, Galanternik L, Vazquez M, et al. Candida blankii: new agent in cystic fibrosis airways? J Cyst Fibros. 2015;14:S140.
  94. Nobrega de Almeida J, Campos SV, Thomaz DY, et al. Candida blankii: an emergent opportunistic yeast with reduced susceptibility to antifungals. Emerg Microbes Infect. 2018;7(1):24.
  95. Benedict K, Richardson M, Vallabhaneni S, et al. Emerging issues, challenges, and changing epidemiology of fungal disease outbreaks. Lancet Infect Dis. 2017;17(12):e403-e411. https://doi.org/10.1016/S1473-3099(17)30443-7
  96. Chowdhary A, Stielow JB, Upadhyaya G, et al. Candida blankii: an emerging yeast in an outbreak of fungaemia in neonates in Delhi, India. Clin Microbiol Infect. 2020;26(5):648.e5-648.e8. https://doi.org/10.1016/j.cmi.2020.01.001
  97. Magill SS, O'Leary E, Janelle SJ, et al. Changes in prevalence of health care-associated infections in U.S. hospitals. N Engl J Med. 2018;379(18):1732-1744. https://doi.org/10.1056/NEJMoa1801550
  98. Chowdhary A, Sharma C, Meis JF. Candida auris: a rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. PLoS Pathog. 2017;13(5):e1006290. https://doi.org/10.1371/journal.ppat.1006290
  99. Teixeira MM, Moreno LF, Stielow BJ, et al. Exploring the genomic diversity of black yeasts and relatives (Chaetothyriales, Ascomycota). Stud Mycol. 2017;86:1-28. https://doi.org/10.1016/j.simyco.2017.01.001
  100. Zhu D, Ma Y, Wang G, et al. Identification of Candida tropicalis BH-6 and synergistic effect with Pantoea agglomerans BH-18 on hydrogen production in marine culture. Appl Biochem Biotechnol. 2015;175(5):2677-2688. https://doi.org/10.1007/s12010-014-1436-7
  101. Burgaud G, Arzur D, Sampaio JP, et al. Candida oceani sp. nov., a novel yeast isolated from a Mid-Atlantic Ridge hydrothermal vent (-2300 meters). Antonie Van Leeuwenhoek. 2011;100(1):75-82. https://doi.org/10.1007/s10482-011-9566-1
  102. Cong LTN, Ngoc Mai CT, Morikawa M, et al. Transformation of iso-pentylbenzene by a biofilm-forming strain of Candida viswanathii TH1 isolated from oil-polluted sediments collected in coastal zones in Vietnam. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2014a;49(7):777-786. https://doi.org/10.1080/10934529.2014.882202
  103. Bac ND, Anh LT, Quang LB, et al. Prevalence of Candida bloodstream isolates from patients in two hospitals in Vietnam. Iran J Microbiol. 2019;11(2):108-113.
  104. Thanh VN, Thuy NT, Chi NT, et al. New insight into microbial diversity and functions in traditional Vietnamese alcoholic fermentation. Int J Food Microbiol. 2016;232:15-21. https://doi.org/10.1016/j.ijfoodmicro.2016.05.024
  105. Leon VM, Garcia-Aguera I, Molto V, et al. PAHs, pesticides, personal care products and plastic additives in plastic debris from Spanish Mediterranean beaches. Sci Total Environ. 2019;670:672-684. https://doi.org/10.1016/j.scitotenv.2019.03.216
  106. Naranjo-Ortiz MA, Gabaldon T. Fungal evolu- tion: major ecological adaptations and evolutionary transitions. Biol Rev Camb Philos Soc. 2019;94(4):1443-1476. https://doi.org/10.1111/brv.12510
  107. Bonugli-Santos RC, Dos Santos Vasconcelos MR, Passarini MR. Marine-derived fungi: diversity of enzymes and biotechnological applications. Front Microbiol. 2015;10:6:269.
  108. Cunliffe M, Hollingsworth A, Bain C, et al. Algal polysaccharide utilisation by saprotrophic planktonic marine fungi. Fungal Ecol. 2017;30:135-138. https://doi.org/10.1016/j.funeco.2017.08.009
  109. McGenity TJ, Folwell BD, McKew BA, et al. Marine crude-oil biodegradation: a central role for interspecies interactions. Aquat Biosyst. 2012;8(1):10. https://doi.org/10.1186/2046-9063-8-10
  110. Passarini MRZ, Rodrigues MVN, da Silva M, et al. Marine-derived filamentous fungi and their potential application for polycyclic aromatic hydrocarbon bioremediation. Mar Pollut Bull. 2011;62(2):364-370. https://doi.org/10.1016/j.marpolbul.2010.10.003
  111. Steliga T, Jakubowicz P, Kapusta P. Changes in toxicity during in situ bioremediation of weathered drill wastes contaminated with petroleum hydrocarbons. Bioresour Technol. 2012;125:1-10. https://doi.org/10.1016/j.biortech.2012.08.092
  112. Uribe-Alvarez C, Ayala M, Perezgasga L, et al. First evidence of mineralization of petroleum asphaltenes by a strain of Neosartorya fischeri. Microb Biotechnol. 2011;4(5):663-672. https://doi.org/10.1111/j.1751-7915.2011.00269.x
  113. Sanders R, Henson SA, Koski M, et al. The biological carbon pump in the North atlantic. Prog Oceanogr. 2014;129:200-218. https://doi.org/10.1016/j.pocean.2014.05.005
  114. Moran XAG, Gasol JM, Pernice MC, et al. Temperature regulation of marine heterotrophic prokaryotes increases latitudinally as a breach between bottom-up and top-down controls. Glob Change Biol. 2017;23(9):3956-3964. https://doi.org/10.1111/gcb.13730