과제정보
This study was supported by grant (2021M00500) from the National Marine Biodiversity Institute of Korea. We would also like to thank researcher, Yun Gyeong Park who helped with the ABTS assay.
참고문헌
- Cho JS, Kang JH, Shin JM, Park IH, Lee HM. 2015. Inhibitory effect of delphinidin on extracellular matrix production via the MAPK/NF-kB pathway in nasal polyp-derived fibroblasts. Allergy Asthma Immunol. Res. 7: 276-282. https://doi.org/10.4168/aair.2015.7.3.276
- Pawankar R. 2003. Nasal polyposis: an update: editorial review. Curr. Opin. Allergy Clin. Immunol. 3: 1-6. https://doi.org/10.1097/00130832-200302000-00001
- Jung JW, Park IH, Cho JS, Lee HM. 2013. Naringenin inhibits extracellular matrix production via extracellular signal-regulated kinase pathways in nasal polyp-derived fibroblasts. Phytother. Res. 27: 463-467. https://doi.org/10.1002/ptr.4735
- Cho JS, Moon YM, Um JY, Moon JH, Park IH, Lee HM. 2012. Inhibitory effect of ginsenoside Rg1 on extracellular matrix production via extracellular signal-regulated protein kinase/activator protein 1 pathway in nasal polyp-derived fibroblasts. Exp. Biol. Med. (Maywood) 237: 663-669. https://doi.org/10.1258/ebm.2012.011342
- Bennur T, Kumar AR, Zinjarde S, Javdekar V. 2015. Nocardiopsis species: incidence, ecological roles and adaptations. Microbiol. Res. 174: 33-47. https://doi.org/10.1016/j.micres.2015.03.010
- Sun HH, White CB, Dedinas J, Cooper R, Sedlock DM. 1991. Methylpendolmycin an indolelactam from a Nocardiopsis sp. J. Nat. Prod. 54: 1440-1443. https://doi.org/10.1021/np50077a040
- Kim JW, Adachi H, Shin-ya K, Hayakawa Y, Seto H. 1997. Apoptolidin, a new apoptosis inducer in transformed cells from Nocardiopsis sp. J. Antibiot. 50: 628-630. https://doi.org/10.7164/antibiotics.50.628
- Li YQ, Li MG, Li W, Zhao JY, Ding ZG, Cui XL, et al. 2007. Griseusin D, a new pyranonaphthoquinone derivative from a alkaphilic Nocardiopsis sp. J. Antibiot. 60: 757-761. https://doi.org/10.1038/ja.2007.100
- Gandhimathi R, Kiran GS, Hema TA, Selvin J, Raviji TR, Shanmughapriya S. 2009. Production and characterization of lipopeptide biosurfactant by a sponge-associated marine actinomycetes Nocardiopsis alba MSA10. Bioprocess Biosyst. Eng. 32: 825-835. https://doi.org/10.1007/s00449-009-0309-x
- Engelhardt K, Degnes KF, Kemmler M, Bredholt H, Fjaervik E, Klinkenberg G, et al. 2010. Production of a new thiopeptide antibiotic, TP-1161, by a marine Nocardiopsis species. Appl. Environ. Micobiol. 76: 4969-4976. https://doi.org/10.1128/AEM.00741-10
- Ding ZG, Li MG, Zhao JY, Ren J, Huang R, Xie MJ, et al. 2010. Naphthospironone A: an unprecedented and highly functionalized polycyclic metabolite from an alkalinemine waste extremophile. Chemistry 16: 3902-3905. https://doi.org/10.1002/chem.200903198
- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
- Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
- Schmolz L, Wallert M, Lorkowski S. 2017. Optimized incubation regime for nitric oxide measurements in murine macrophages using the Griess assay. J. Immunol. Methods 449: 68-70. https://doi.org/10.1016/j.jim.2017.06.012
- Lee DS, Lee CM, Park SK, Yim MJ, Lee JM, Choi G, et al. 2017. Anti-inhibitory potential of an ethanolic extract of Distromium decumbens on pro-inflammatory cytokine production in Pseudomonas aeruginosa lipopolysaccharide-stimulated nasal polyp-derived fibroblasts. Int. J. Mol. Med. 40: 1950-1956.
- Sharma JN, Al-Omran A, Parvathy SS. 2007. Role of nitric oxide in inflammatory diseases. Inflammophamacology 15: 252-259. https://doi.org/10.1007/s10787-007-0013-x
- Ruhee RT, Ma S, Suzuki K. 2019. Sulforaphane protects cells against lipopolysaccharide-stimulated inflammation in murine macrophages. Antioxidants 8: 577. https://doi.org/10.3390/antiox8120577
- Kwon DH, Cha HJ, Choi EO, Leem SH, Kim GY, Moon SK, et al. 2018. Schisandrin A suppresses lipopolysaccharide-induced inflammation and oxidative stress in RAW 264.7 macrophages by suppressing the NF-kB, MAPKs and PI3K/Akt pathways and activating Nrf2/HO-1 signaling. Int. J. Mol. Med. 41: 264-274. https://doi.org/10.3892/ijmm.2017.3209
- Zong Y, Sun L, Liu B, Deng YS, Zhan D, Chen YL, et al. 2012. Resveratrol inhibits LPS-induced MAPKs activation via activation of the phosphatidylinositol 3-kinase pathway in murine RAW 264.7 macrophage cells. PLoS One 7: e44107. https://doi.org/10.1371/journal.pone.0044107
- Guha M, Mackman N. 2001. LPS induction of gene expression in human monocytes. Cell. Signal. 13: 85-94. https://doi.org/10.1016/S0898-6568(00)00149-2
- Hu W, Wang X, Wu L, Shen T, Ji L, Zhao X, et al. 2016. Apigenin-7-O-β-D-glucuronide inhibits LPS-induced inflammation through the inactivation of AP-1 and MAPK signaling pathways in RAW 264.7 macrophages and protects mice against endotoxin shock. Food Funct. 7: 1002-1013. https://doi.org/10.1039/C5FO01212K
- Li X, Shen J, Jiang Y, Shen T, You L, Sun X, et al. 2016. Anti-inflammatory effects of chloranthalactone B in LPS-stimulated RAW 264.7 cells. Int. J. Mol. Sci. 17: 1938. https://doi.org/10.3390/ijms17111938
- Lin D, Xiao M, Zhao J, Li Z, Xing B, Li X, et al. 2016. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 21: 1374. https://doi.org/10.3390/molecules21101374
- Xu X, Li H, Hou X, Li D, He S, Wan C, et al. 2015. Punicalagin induces Nrf2/HO-1 expression via upregulation of PI3K/AKT pathway and inhibits LPS-induced oxidative stress in RAW 264.7 macrophages. Mediat. Inflamm. 2015: 380218. https://doi.org/10.1155/2015/380218
- Kaminska B. 2005. MAPK signaling pathways as molecular targets for anti-inflammatory therapy-from molecular mechanisms to therapeutic benefits. Biochem. Biophys. Acta 1754: 253-262.
- Williams D, Li C, Ha T, Ozment-Skelton T, Kalbfleisch JH, Preiszner J, et al. 2004. Modulation of the phosphoinositide 3-kinase pathway alters innate resistance to polymicrobial sepsis. J. Immunol. 172: 449-456. https://doi.org/10.4049/jimmunol.172.1.449
- Salaria N, Sharma N, Garg U, Saluja SK, Agarwal R. 2015. Inflammatory septal nasal polyp. Iran J. Otorhinolaryngol. 27: 319-323.
- Wick G, Backovic A, Rabensteiner E, Plank N, Schwentner C, Sgonc R. 2010. The immunology of fibrosis: Innate and adaptive responses. Trends Immunol. 31: 110-119. https://doi.org/10.1016/j.it.2009.12.001
- Park SK, Jin YD, Park YK, Yeon SH, Xu J, Han RN, et al. 2017. IL-25-induced activation of nasal fibroblast and its association with the remodeling of chronic rhinosinusitis with nasal polyposis. PLoS One 12: e0181806. https://doi.org/10.1371/journal.pone.0181806
- Shoulders MD, Raines RT. 2009. Collagen structure and stability. Annu. Rev. Biochem. 78: 929-958. https://doi.org/10.1146/annurev.biochem.77.032207.120833
- Ryu NH, Shin JM, Um JY, Park IH, Lee HM. 2016. Wogonin inhibits transforming growth factor beta1-induced extracellular matrix production via the p38/activator protein 1 signaling pathway in nasal polyp-derived fibroblasts. Am. J. Rhinol. Allergy 30: 128-133. https://doi.org/10.2500/ajra.2016.30.4329
- Little SC, Early SB, Woodard CR, Shonka Jr. DC, Han JK, Borish L, et al. 2008. Dual action of TGF-beta1 on nasal-polyp derived fibroblasts. Laryngoscope 118: 320-324. https://doi.org/10.1097/MLG.0b013e318159cc0b
- Park IH, Park SJ, Cho JS, Moon YM, Kim TH, Lee SH, et al. 2012. Role of reactive oxygen species in transforming growth factor beta1-induced alpha smooth-muscle actin and collagen production in nasal polyp-derived fibroblasts. Int. Arch. Allergy Immunol. 159: 278-286. https://doi.org/10.1159/000337460