DOI QR코드

DOI QR Code

SiAlON계 절삭공구 소재의 특성 비교

A Comparative Study on Characteristics of Cutting Tool Materials Based on SiAlON Ceramics

  • 김성원 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 최재형 (한국세라믹기술원 이천분원 엔지니어링세라믹센터)
  • Kim, Seongwon (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Choi, Jae-Hyung (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology)
  • 투고 : 2021.11.10
  • 심사 : 2021.12.20
  • 발행 : 2021.12.28

초록

SiAlON-based ceramics are a type of oxynitride ceramics, which can be used as cutting tools for heat-resistant super alloys (HRSAs). These ceramics are derived from Si3N4 ceramics. SiAlON can be densified using gas-pressure reactive sintering from mixtures of oxides and nitrides. In this study, we prepare an α-/β-SiAlON ceramic composite with a composition of Yb0.03Y0.10Si10.6Al1.4O1.0N15.0. The structure and mechanical/thermal properties of the densified SiAlON specimen are characterized and compared with those of a commercial SiAlON cutting tool. By observing the crystallographic structures and microstructures, the constituent phases of each SiAlON ceramic, such as α-SiAlON, β-SiAlON, and intergranular phases, are identified. By evaluating the mechanical and thermal properties, the contribution of the constituent phases to these properties is discussed as well.

키워드

과제정보

본 연구는 산업통상자원부의 미래성장동력 기술개발사업의 첨단공구고도화(과제번호 10067065)의 연구비 지원으로 수행되었으며 이에 감사드립니다.

참고문헌

  1. R. M'Saoubi, D. Axinte, S. L. Soo, C. Nobel, H. Attia, G. Kappmeyer, S. Engin and W.-M. Sim: CIRP Ann. Manuf. Tech., 64 (2015) 557. https://doi.org/10.1016/j.cirp.2015.05.002
  2. D. Ulutan and T. Ozel: Int. J. Mach. Tools Manuf., 51 (2011) 250. https://doi.org/10.1016/j.ijmachtools.2010.11.003
  3. E. O. Ezugwu, J. Bonney and Y. Yamane: J. Mater. Process. Technol., 134 (2003) 233. https://doi.org/10.1016/s0924-0136(02)01042-7
  4. N. C. Acikbas, H. Yurdakul, H. Mandal, F. Kara, S. Turan, A. Kara and B. Bitterlich: J. Euro. Ceram. Soc., 32 (2012) 1321. https://doi.org/10.1016/j.jeurceramsoc.2011.11.030
  5. N. C. Acikbas and O. Demir: Ceram. Int., 39 (2013) 3249. https://doi.org/10.1016/j.ceramint.2012.10.013
  6. B. Bitterlich, S. Bitsch and K. Friederich: J. Euro. Ceram. Soc., 28 (2008) 989. https://doi.org/10.1016/j.jeurceramsoc.2007.09.003
  7. Y.-M. Chiang, D. Birnie III and W. D. Kingery: Physcal Ceramics- Principles for Ceramic Science and Engineering, John Wiley & Sons, Inc., (1997) 69.
  8. V. Izhevskiy, L. Genova, J. Bressiani and F. Aldinger: J. Euro. Ceram. Soc., 20 (2000) 2275. https://doi.org/10.1016/S0955-2219(00)00039-X
  9. A. Rosenflanz: Curr. Opin. Solid State Mater. Sci., 4 (1999) 453. https://doi.org/10.1016/S1359-0286(00)00004-8
  10. A. Rosenflanz and I.-W. Chen: J. Am. Ceram. Soc., 82 (1999) 1025. https://doi.org/10.1111/j.1151-2916.1999.tb01869.x
  11. A. Rosenflanz and I.-W. Chen: J. Eur. Ceram. Soc., 19 (1999) 2325. https://doi.org/10.1016/S0955-2219(99)00097-7
  12. G. Chakraborty, S. Bandyopadhyay, B. Haldar and R. Das: Ceram. Int., 37 (2011) 1011. https://doi.org/10.1016/j.ceramint.2010.11.021
  13. W. D. Callister: Materials Science and Engineering-An Introduction, 7th Ed., John Wiley & Sons, Inc., (2007) 3.
  14. J.-H. Choi, S.-M. Lee, S. Nahm and S. Kim: J. Korean Powder Metall. Inst., 24 (2017) 431. https://doi.org/10.4150/KPMI.2017.24.6.431
  15. S. Lee, J.-H. Choi, Y. Han, S.-M. Lee and S. Kim: J. Korean Powder Metall. Inst., 26 (2019) 415. https://doi.org/10.4150/KPMI.2019.26.5.415
  16. I.-W. Chen and A. Rosenflanz: Nature, 389 (1997) 701. https://doi.org/10.1038/39542
  17. E. E. Underwood: Quantitative Stereology for Microstructural Analysis in Microstructural Analysis, Springer, (1973) 35.
  18. H. Mandal and D. P. Thompson: J. Euro. Ceram. Soc., 12 (1993) 421. https://doi.org/10.1016/0955-2219(93)90074-2
  19. J. B. Wachtman, W. C. Cannon and M. J. Matthewson: Mechanical Properties of Ceramics, 2nd Ed., John Wiley & Sons, Inc., (2009) 216 .
  20. J. Martan and P. Benes: Thermochimica Acta, 539 (2012) 51. https://doi.org/10.1016/j.tca.2012.03.029
  21. H. Lehmann, D. Pitzer, G. Pracht, R. Vassen and D. Stover: J. Am. Ceram. Soc., 86 (2003) 1338. https://doi.org/10.1111/j.1151-2916.2003.tb03473.x
  22. C. Kittel and P. McEuen: Introduction to Solid State Physics, John Wiley & Sons, Inc., (1986) 125.
  23. X. Yi, W. Zhang and T. Akiyama: Thermochimica Acta, 576 (2014) 56. https://doi.org/10.1016/j.tca.2013.12.002
  24. X. Zhu, Y. Zhou, K. Hirao and Z. Lences: J. Am. Ceram. Soc., 89 (2006) 3331. https://doi.org/10.1111/j.1551-2916.2006.01195.x
  25. D. Kusano, S. Adachi, G. Tanabe, H. Hyuga. Y. Zhou and Kiyoshi Hirao: Int. J. Appl. Ceram. Technol., 9 (2012) 229. https://doi.org/10.1111/j.1744-7402.2011.02618.x
  26. D. Kusano, Y. Noda, H. Shibasaki, H. Hyuga. Y. Zhou and Kiyoshi Hirao: Int. J. Appl. Ceram. Technol., 10 (2013) 690. https://doi.org/10.1111/j.1744-7402.2012.02767.x