DOI QR코드

DOI QR Code

이탈리안 라이그라스 종자 코팅을 위한 피복 재료 선발 및 발아 평가

Selection of Coating Materials for Italian Ryegrass Seed and Its Germination Assessment

  • 장현수 (농촌진흥청 국립식량과학원) ;
  • 배희수 (농촌진흥청 국립식량과학원) ;
  • 이윤호 (농촌진흥청 국립식량과학원) ;
  • 김대욱 (농촌진흥청 국립식량과학원) ;
  • 안승현 (농촌진흥청 국립식량과학원) ;
  • 윤종탁 (농촌진흥청 국립식량과학원) ;
  • 김욱한 (농촌진흥청 국립식량과학원)
  • 투고 : 2021.09.23
  • 심사 : 2021.11.11
  • 발행 : 2021.12.01

초록

1. 이탈리안 라이그라스의 코팅종자 제조시 접착제는 PVA가 유리하였으며 2~5% 내에서는 큰 차이가 없어 경제적으로 판단했을 경우에는 2%가 유리하다. 2. 탄산칼슘+탈크를 활용하여 종자 코팅하는 것이 천립중, 리터중이 높고 매끄럽게 성형되어 유리하였으며, pH와 EC가타 피복제에 비해 낮아 화학적으로 안전하였으며, 발아세, 평균발아속도가 높아 타 피복제에 비해 우수하였다. 3. 탄산칼슘+탈크를 무게에 따라 코팅하여 비교했을 시, 대조구에 비해 발아율, 발아세, 평균 발아 속도에서 초장 차이를 보이지 않았으며, 강도는 피복 재료와 종자와의 무게 비율 1:1과 그 이상 무게를 추가할 경우에는 차이를 보이지 않아 경제성을 고려하였을 때 1:1이 가장 유리하였다.

This study was conducted to determine an appropriate coating method for mechanized sowing of small and light Italian ryegrass seeds. In the case of manufacturing coated seeds, 2% PVA was superior as an adhesive compared to PVP and Tween80. Calcium carbonate + talc adhered to the seeds smoothly and well and the seed weight was higher than that of the other coating materials. The germination percentage of seeds coated with calcium carbonate + talc was 95.8%, which was not significantly different from 96.5% of the control group, but the mean daily germination was the highest. As the coverage ratio of calcium carbonate + talc increased, the strength tended to increase when coated at 1.5 times the seed weight. There was no difference in the germination rate and plant height compared to the control group according to the coverage ratio.

키워드

과제정보

본 논문은 농촌진흥청 연구사업(세부과제명: 새만금간척지 밭이용 IRG 종자생산을 위한 질소시비량 및 파종량 설정, 과제번호: PJ013830022020)의 지원에 의해 이루어진 결과의 일부로 연구사업 수행에 협조해 주신 모든 분들에게 감사드립니다.

참고문헌

  1. Alcordo, I. S. and J. E. Rechcigl. 1993. Phosphogypsum in agriculture: A review. Advances in agronomy 49 : 55-118. https://doi.org/10.1016/S0065-2113(08)60793-2
  2. Adhikari, T., S. Kundu, and A. S. Rao. 2016. Zinc delivery to plants through seed coating with nano-zinc oxide particles. J. Plant Nutr 39 : 136-146. https://doi.org/10.1080/01904167.2015.1087562
  3. Afzal, I., T. Javed, M. Amirkhani, and A. G. Taylor. 2020. Modern Seed Technology: Seed Coating Delivery Systems for Enhancing Seed and Crop Performance. Agriculture 10 : 526. https://doi.org/10.3390/agriculture10110526
  4. Cho, S. K., H. Y. Seo, Y. B. Oh., E. T. Lee, I. H. Chou, Y. S. Jang, Y. S. Song, and T. G. Min. 2000. Selection of coating materials and binders for pelleting onion (Allium cepa L.) seed. J. Amer. Soc. Hort. Sci. 111 : 17-20.
  5. Baxter, L. and L. Waters. 1986. Effect of a hydrophilic polymer seed coating on the imbibition, respiration and germination of sweet corn at four matrix potentials. Journal of American Society for Horticultural Science 11(4) : 517-520. https://doi.org/10.21273/JASHS.111.4.517
  6. Furuhata, M., T. Chosa, O. Matsumura, and T. Yukawa. 2009. Effect of iron-powder coating versus calcium-peroxide coating of seeds on seedling emergence and establishment of rice direct seeded in submerged paddy field. Jpn. J. Crop Sci. 78(2) : 170-179. https://doi.org/10.1626/jcs.78.170
  7. Gharaibeh, M. A., N. I. Eltaif, and S. H. Shra'ah. 2010. Reclamation of a calcareous saline-sodic soil using phosphoric acid and by-product gypsum. Soil Use and Management. 26(2) : 141-148. https://doi.org/10.1111/j.1475-2743.2010.00260.x
  8. Im, D. H., J. H. Nam, J. H. Kim, M. J. Lee, and I. R. Rho. 2020. Effect of pelleting treatment on seed germination in Adenophora triphylla. Korean J. Medicinal Crop Sci. 28(2) : 128-13. https://doi.org/10.7783/KJMCS.2020.28.2.128
  9. Javed, T. and I. Afzal. 2020. Impact of seed pelleting on germination potential, seedling growth and storage of tomato seed. Acta Hortic. 1273 : 417-424. https://doi.org/10.17660/actahortic.2020.1273.54
  10. Javed, T., I. Afzal, and R. P. Mauro. 2021. Seed Coating in Direct Seeded Rice: An Innovative and Sustainable Approach to Enhance Grain Yield and Weed Management under Submerged Conditions. Sustainability. 13 : 2190. https://doi.org/10.3390/su13042190
  11. Kang, J. S. 2002. Selection of binder and solid materials for pelleting welsh onion (Allium fistulosum L.) seeds. Korean Journal of Life Science. 12(6) : 721-730. https://doi.org/10.5352/JLS.2002.12.6.721
  12. Kang, J. S., J. L. Cho, and J. M. Lim. 2003. Effect of seed pelleting on the precision planting and seedling emergence of carrot seeds. Korean Journal of life Science. 13(4) : 428-432. https://doi.org/10.5352/JLS.2003.13.4.428
  13. Kang, J. S. 2004. Identification of pelleting materials and effect of nutrient addition on the germination of pelleted lettuce seeds. Journal of bio-Environment control. 13(1) : 8-15.
  14. Kang, J. S., B. G. Son, Y. W. Choi, Y. J. Lee, Y. H. Park, and I. S. Choi. 2007. Effect of physical, chemical properties and of pelleting solid materials on the germination in pelleted carrot seeds. 17(12) : 1701-1708. https://doi.org/10.5352/JLS.2007.17.12.1701
  15. Kang, Y. S., W. J. Kim, D. S. Hwang, and H. K. Kim. 2020. Methods of application and beneficial effects of silicate-coating rice seeds. Korean journal of crop science. 65(1) : 30-39.
  16. Klein, J. D. and M. Sachs. 1992. Measurement of water uptake and volatile production by coated wheat seeds and subsequent seedling growth. Seed Science & Technology 20 : 299-305.
  17. Kwon, B. S., Y. S. Jang, and S. S. Choi. 2005. Effect of germination on Alisma plantago by pellet coating. Korean Journal of Crop Science. 50 : 239-241.
  18. Kim, J. D., C. H. Kwon, S. H. Chae, J. K. Kim, B. W. Kim, and S. Sung. 2007. Comparison of coating and pelleting technique for surface sowing of orchardgrass and tall fescue seeds. J. Korea Grassl. Sci. 27(4) : 281-286. https://doi.org/10.5333/KGFS.2007.27.4.281
  19. Ma, Y., Latr, A., Rocha, I., Freitas, H., Vosatka, M., and Oliveira, R. S. 2019. Delivery of inoculum of Rhizophagus irregularis via seed coating in combination with Pseudomonas libanensis for cowpea production. Agronomy. 9(1) : 33. https://doi.org/10.3390/agronomy9010033
  20. Ministry of Agriculture, Food and Rural Affairs (MAFRA). 2020. Retrieved from https://lib.mafra.go.kr/Search/Detail/48112?Key=주요통계
  21. Min, T. G., M. S. Park, and S. S. Lee. 1996. Physical characteristics and germination of pelleted tobacco seeds depending on molding materials. Kor. J. Crop Sci. 41 : 535-541.
  22. Nam, C. H., K. S. Kim, M. H. Park, A. A. Yun, H. S. Bae, and H. S Jang. 2020. The Effect of Cultivation Environments on Seed yield and Quality of Italian Ryegrass in Samsan Reclaimed Land. J. Kor. Grassl. Forage Sci. 40(2) : 73-79. https://doi.org/10.5333/KGFS.2020.40.2.73
  23. Naylor, R. E. and C. G. Rentice. 1986. Effect of a calcium peroxide seed coating on germination of perennial ryegrass seeds. Annals of applied biology. 108(3) : 611-618. https://doi.org/10.1111/j.1744-7348.1986.tb02000.x
  24. Qiu, Y., M. Amirkhani., H. Mayton, Z. Chen, and A. G. Taylor. 2020. Biostimultant seed coating treatments to improve cover crop germination and seedling growth. Agronomy. 10 : 154. https://doi.org/10.3390/agronomy10020154
  25. RDA. 2019. Profitability and management implications of small-area crops. RDA. 8-13.
  26. Shivay, Y. S., D. Kumar, R. Prasad, and L. P. S. Ahlawat. 2008. Relative yield and zinc uptake by rice from zinc sulphate and zinc oxide coatings onto urea. Nutr. Cycl. Agroecosyst. 80 : 181-188. https://doi.org/10.1007/s10705-007-9131-5
  27. Tondey, M., A. Kalia, A. Singh, G. S. Dheri, M. S. Taggar, E. Nepovimova, O. Krejcar, and K. Kuca. 2021. Seed Priming and Coating by Nano-Scale Zinc Oxide Particles Improved Vegetative Growth, Yield and Quality of Fodder Maize (Zea mays). Agronomy. 11 : 729. https://doi.org/10.3390/agronomy11040729
  28. Yamauchi, M. 2017. A review of iron-coating technology to stabilize rice direct seeding onto puddled soil. Agronomy Journal. 109(3) : 739-70. https://doi.org/10.2134/agronj2016.10.0569
  29. Yu, S. H., Y. K. Kim, I. S. Choi, J. K. Woo, C. S. Hyun, T. G. Kang, H. J. Jun, S. H. Lee, J. G. Kim, and Y. Choi. 2019. Analysis of Utilization Status and Spray Nozzle Characteristics and of Agricultural Drones. Korean Society for Agricultural Machinery. 24(2) : 96.