DOI QR코드

DOI QR Code

가속열 노화로 열화된 탄성받침 고무재료의 전단 특성(2): 합성고무

Shear Characteristics of Elastomeric Bearing Rubber Deteriorated by Accelerated Heat Aging(2): Chloroprene Rubber

  • 선창호 (울산대학교 건설환경공학부) ;
  • 김익현 (울산대학교 건설환경공학부)
  • 투고 : 2021.10.17
  • 심사 : 2021.12.01
  • 발행 : 2021.12.31

초록

유연한 고무재료와 강재 보강판을 적층으로 구성한 탄성받침은 우수한 수직강성과 유연한 횡강성으로 교량의 내진보강용으로 널리 사용되고 있다. 무엇보다 시공이 간단하고 비용이 높지 않다는 장점을 지니고 있다. 고무재료의 한 종류인 합성고무는 천연고무에 비해 노화에 대한 저항성이 크지만 이 역시 다양한 열화요인으로 성능이 저하된다. 내진설계기준 및 내진성능평가요령에서는 이러한 노화의 특성을 반영하고 있지 않지만 관련 연구가 축적되면 이를 반영하는 것이 합리적이다. 합성고무를 대상으로 노화촉진시간과 노출시간을 변수로 하여 노화촉진시험을 수행하여 전단특성의 변화를 분석하였다. 노화가 진행될수록 최대전단응력과 전단변형율은 감소한다. 또한 동일한 전단변형률에서 전단강성이 크게 증가한다.

Elastomeric bearings composed of flexible rubber materials and steel reinforcement plates are widely used for seismic retrofit of bridges due to their excellent vertical stiffness and flexible lateral stiffness. Especially, it has the advantages of simple construction and low cost. Chloroprene rubber, a type of rubber material, has greater resistance to aging than natural rubber, but its performance is also degraded due to various deterioration factors. Although these aging characteristics are not reflected in the seismic design standards and seismic performance evaluation guidelines, it is reasonable to reflect this when related studies are accumulated. For chloroprene rubber, accelerated heat aging test was performed with variables of heating temperatures and exposure time to analyze shear characteristics. As aging progresses the maximum shear stress and shear strain decrease. Also, the shear stiffness is greatly increased at the same shear strain.

키워드

과제정보

본 연구는 국토교통부 건설기술연구사업의 연구비지원(19SCIP-B146946-03)에 의해 수행되었습니다.

참고문헌

  1. KS F 4420. (2013 Confirm), Steel-Laminated elastomeric bearing for bridge, Korean Agency for Technology and Standards.
  2. Mott, P. H. and Roland, C. M. (2001), Aging of Natural Rubber in Air and Seawater, Rubber Chemistry and Techology, Vol. 74, pp.79-88 https://doi.org/10.5254/1.3547641
  3. Haosheng Gu, Yoshito Itoh, Kazuya Satoh. (2005), EFFECT OF RUBBER BEARING AGEING ON SEISMIC RESPONSE OF BASE-ISOLATED STEEL BRIDGES, Fourth International Conference on Advances in Steel Structures, vol2, pp.1627-1632.
  4. Yoshikazu TAKAHASHI. (2011), DAMAGE OF RUBBER BEARINGS AND DAMBERS OF BRIDGES IN 2011 GREAT EAST JAPAN EARTHQUAKE
  5. Nobuo Soda, Kaneyosi Yamda, Takao Kimizu, Takeshi Hirose, Motoyuki Suzuki. (2013), Performance test of natural rubber bearing ruptured according to The 2011 off the Pacific coast of Tohoku Earthquake, Journal of Structural Engineering, A., JSCE, 59A, pp.516-526.
  6. Jun-ichi Hoshikuma, Masatsugu Shinohara and Takao Okada. (2015), RECENT RESEARCHES ON PROPERTIES OF LAMINATED ELASTOMERIC RUBBER BEARINGS UNDER CYCLIC LOADING
  7. KDS 24 17 10. (2016), Standard of Bridge Seismic Design(General Design Method), Korea Construction Standards Center.
  8. KDS 24 17 10. (2021), Standard of Bridge Seismic Design(Limits State Design Method), Korea Construction Standards Center.
  9. KDS 24 17 10. (2018), Standard of Bridge Seismic Design(Cable Bridge), Korea Construction Standards Center.
  10. Korea Infrastructure Safety Corporation (KISC). (2019), Seismic performance evaluation method for existing infrastructures (bridges).
  11. KS M ISO 1827. (2014), Rubber, vulcanized or thermoplastic Determination of modulus in shear or adhesion to rigid plates Quadruple shear method, Korean Agency for Technology and Standards.
  12. KS M ISO 11346. (2014), Rubber, vulcanized or thermoplastic Estimation of life-time and maximum temperature of use, Korean Agency for Technology and Standards.
  13. KS M ISO 188. (2014), Rubber, vulcanized or thermoplastic - Accelerated ageing and heat resistance tests, Korean Agency for Technology and Standards.
  14. Sun, C. H and Kim, I. H. (2021), Shear Characteristics of Elastomeric Bearing Rubber Deteriorated by Accelerated Heat Aging(1) : Natural Rubber, Journal of the Korean Institute for Structural Maintenance and Inspection, 25(6).