참고문헌
- S. H. Lee, J. S. Kim, N. H. Kang, H. H. Jo, and D. H. Nam, Surface Characteristic of Graphene Coated Stainless Steel for PEMFC Bipolar Plate, Journal of the Korean Institute of Surface Engineering, 44, 226 (2011). Doi: http://dx.doi.org/10.5695/JKISE.2011.44.5.226
- A. Hermann, T. Chaudhuri and P. Spagnol, Bipolar plates for PEM fuel cells: A review, International Journal of Hydrogen Energy, 30, 1297 (2005). Doi: https://doi.org/10.1016/j.ijhydene.2005.04.016
- K. S. Weil, J. Y. Kim, G. Xia, J. Coleman, and Z. G. Yang, Boronization of nickel and nickel clad materials for potential use in polymer electrolyte membrane fuel cells, Surface & Coatings Technology, 201, 4436 (2006). Doi: https://doi.org/10.1016/j.surfcoat.2006.08.039
- J. Scholta, B. Rohland, V. Trapp, and U. Focken, Investigations on novel low-cost graphite composite bipolar plates, Journal of Power Sources, 84, 231 (1999). Doi: https://doi.org/10.1016/S0378-7753(99)00322-5
- D. R. Hodgson, B. May, P. L. Adcock, and D. P. Davies, New lightweight bipolar plate system for polymer electrolyte membrane fuel cells, Journal of Power Sources, 96, 233 (2001). Doi: https://doi.org/10.1016/S0378-7753(01)00568-7
- K. M. Kim, S. U. Koh, and K. Y. Kim, Effect of Tantalum and Lanthanum Addition on Electrochemical Property of Austenitic Stainless Steel in a Simulated PEMFC Environment, Corrosion Science and Technology, 7, 338 (2008). Doi https://scienceon.kisti.re.kr/srch/selectPORSrchArticle.do?cn=JAKO200821161843187
- H. Tawfik, Y. Hung, and D. Mahajan, Metal bipolar plates for PEM fuel cell-A review, Journal of Power Sources, 163, 755 (2007). Doi: https://doi.org/10.1016/j.jpowsour.2006.09.088
- K. H. Hou, C. H. Lin, M. D. Ger, S. W. Shiah, and H. M. Chou, Analysis of the Corrosion Behavior of Al Alloy Bipolar Plate for Proton Exchange Membrane Fuel Cell (PEMFC) Under Operating Thermal Conditions, International Journal of Green Energy, 9, 71 (2012). Doi: https://doi.org/10.1080/15435075.2011.621474
- S. Rivas, E. Cuara, F. Manriquez, I. R. Terol, and G. Orozco, Corrosion Performance of Stainless Steel and Inconel in Simulated Fuel-Cell Media, Journal of The Electrochemical Society, 38, 13 (2007). Doi: https://doi.org/10.1149/1.2806946
- R. F. Silva, D. Franchi, A. Leone, L. Pilloni, A. Masci, and A. Pozio, Surface conductivity and stability of metallic bipolar plate materials for polymer electrolyte fuel cells, Electrochimica. Acta, 51, 3592 (2006). Doi: https://doi.org/10.1016/j.electacta.2005.10.015
- S. Aryani, and R. Taherian, Int. Multidisciplinary research e-journal, 3, 232 (2016).
- P. J. Dillon, R. A. Reid, and R. Girard, Changes in the Chemistry of Lakes Near Subury, Ontario Following Reductions of SO2 Emissions, Water Air Soil Poll, 31, 59 (1986). Doi: https://doi.org/10.1007/978-94-009-3385-9_111
- L. V. Biert, M. Godjevac, K. Visser, and P. V. Aravind, A review of fuel cell systems for maritime applications, Journal of Power Sources, 327, 345 (2016). Doi: https://doi.org/10.1016/j.jpowsour.2016.07.007
- J. R, Davis, Corrosion of aluminum and aluminum alloys, pp. 25 - 26, ASM International (1999).
- A. L. Paulina, O. X. Octavio, G. L. Diego, V. L. Natalya, A. D. A. Marco, V. L. Irina, and A. E. Elsa, The Inhibition of Aluminum Corrosion in Sulfuric Acid by Poly(1-vinyl-3-alkyl-imidazolium Hexafluorophosphate, Materials, 7, 5711 (2014). Doi: https://doi.org/10.3390/ma7085711
- S. R. Kumar, S. D. Krishnaa, M. D. Krishan, N. T. Gokulkumar, and A. R. Alilesh, Investigation on corrosion behaviour of aluminium 6061-T6 alloy in acidic, alkaline and salt medium, Materials Today : Proceedings, 45, 1878 (2021). Doi: https://doi.org/10.1016/j.matpr.2020.09.079
- M. Curioni and F. Scenini, The Mechanism of Hydrogen Evolution During Anodic Polarization of Aluminium, Electrochimica Acta, 180, 712 (2015). Doi: https://doi.org/10.1016/j.electacta.2015.08.076
- K. S. Athanasios and G. L. Angeliki, Electrochemical Behavior of Al-Al9Co2 Alloys in Sulfuric Acid, Corrosion and Materials Degradation, 1, 249 (2020). Doi: https://doi.org/10.3390/cmd1020012
- H. S. Kwon, H. S. Kim, C. J. Park, and H. J. Jang, Comprehension of stainless steels, p. 168, 191, Steel & Metal News (2007).
- D. A. Jones, Principles and prevention of corrosion, pp. 267 - 281, Pearson (1992).
- H. Nagano and H. Kajjmura, Clarification of stress corrosion cracking mechanism on nickel base alloys in steam generators for their long lifetime assurance, United States: NACE International, 6 (1995). Doi: https://inis.iaea.org/search/search.aspx?orig_q=RN:27043608
- T. Xu, S. Wang, X. Tang, Y. Li, J. Yang, J. Li, and Y. Zhang, Corrosion Mechanism of Inconel 600 in Oxidizing Supercritical Aqueous Systems Containing Multiple Salts, Industrial & Enginnering Chemistry Research, 58, 23046 (2019). Doi: https://doi.org/10.1021/acs.iecr.9b04527
- B. M. Dougall, Effect of Chloride Ion on the Localized Breakdown of Nickel Oxide Films, Journal of The Electrochemical Society, 126, 919 (1979). Doi: https://doi.org/10.1149/1.2129194
- C. R. Clayton and Y. C. Lu, A Bipolar Model of the Passivity of Stainless Steel: The Role of Mo Addition, Journal of The Electrochemical Society, 133, 2465 (1986). Doi: https://doi.org/10.1149/1.2108451
- L. R. Hilbert, D. B. Ravn, J. Kold, and L. Gram, Influence of surface roughness of stainless steel on microbial adhesion and corrosion resistance, International Biodeterioration & Biodegradation, 52, 175 (2003). Doi: https://doi.org/10.1016/S0964-8305(03)00104-5
- G. T. Burstein, and S. P. Vines, Repetitive Nucleation of Corrosion Pits on Stainless Steel and the Effects of Surface Roughness, Journal of The Electrochemical Society, 148, 504 (2001). Doi: https://doi.org/10.1149/1.1416503
- ASTM, G46-94, Standard Guide for Examination and Evaluation of PittingCorrosion, p. 5, ASTM International, West Conshohocken, PA (2005).
- A. U. Malic, P. C. M. Kutty, N. A. Siddiqi, N. Andijani, and S. Ahmed, The influence of pH and chloride concentration on the corrosion behaviour of AISI 316L steel in aqueous solutions, Corrosion Science, 33, 1809 (1992). Doi: https://doi.org/10.1016/0010-938X(92)90011-Q