References
- Aflaki, E. and Moodi, F. (2017), "Laboratory tests for studying the performance of grouted micro-fine cement", Comput. Concrete, 20(2), 145-154. https://doi.org/10.12989/cac.2017.20.2.145.
- Alabduljabbar, H., Haido, J.H., Alyousef, R., Yousif, S.T., McConnell, J., Wakil, K. and Jermsittiparsert, K. (2020), "Prediction of the flexural behavior of corroded concrete beams using combined method", Struct., 25, 1000-1008. https://doi.org/10.1016/j.istruc.2020.03.057.
- Al-Mishhadani, S.A., Joni, H.H. and Radhi, E.M.S. (2012), "Effect of age on nondestructive tests results for existing concrete", Iraqi J. Mech. Mater. Eng., 12(4), 630-646.
- Ali-Benyahia, K., Kenai, S. and Ghrici, M. (2010), "Correlation between nondestructive and destructive tests of low strength concrete", 37th IAHS World Congress on Housing Science.
- Amini, K., Jalalpour, M. and Delatte, N. (2016), "Advancing concrete strength prediction using non-destructive testing: Developmentand verification of a generalizable model", Constr. Build. Mater., 102, 762-768. https://doi.org/10.1016/j.conbuildmat.2015.10.131
- Asteris, P.G. and Mokos, V.G. (2020), "Concrete compressive strength using a rtificial neural networks", Neural Comput. Appl., 32(15), 11807-11826. https://doi.org/10.1007/s00521-019-04663-2.
- Atakulreka, A. and Sutivong, D. (2007), "Avoiding local minima in feedforward neural networks by simultaneous learning", Australasian Joint Conference on Artificial Intelligence, Springer, Berlin, Heidelberg.
- Atici, U. (2011), "Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network", Exp. Syst. Appl., 38(8), 9609-9618. https://doi.org/10.1016/j.eswa.2011.01.156.
- Ayat, H., Kellouche, Y., Ghrici, M. and Boukhatem, B. (2018), "Compressive strength prediction of limestone filler concrete using artificial neural networks", Adv. Comput. Des., 3(3), 289-302. https://doi.org/10.12989/acd.2018.3.3.289.
- Azreen, M.N., Pauzi, I.M., Nasharuddin, I., Haniza, M.M., Akasyah, J., Karsono, A.D. and Lei, V.Y. (2016), "Prediction of concrete compression strength using ultrasonic pulse velocity", AIP Conf. Proc., 1704(1), 040006. https://doi.org/10.1063/1.4940092.
- Banu, S.S., Kartikeyan, J. and Jayabalan, P. (2020), "Influence of using agrowaste as partial replacement in cement on the compressive strength of concrete-A statistical approach", Constr. Build. Mater., 250, 118746. https://doi.org/10.1016/j.conbuildmat.2020.118746
- Bogas, J.A., Gomes, M.G. and Gomes, A. (2013), "Compressive strength evaluation of structural lightweight concrete by non destructive ultrasonic pulse velocity method", Ultrasonic., 53(5), 962-972. https://doi.org/10.1016/j.ultras.2012.12.012.
- Bzeni, D.K. and Ihsan, M.A. (2013), "Estimating strength of SCC using non-destructive combined method", 3rd International Conference on Sustainable Construction Materials and Technologies.
- Choi, H. and Azari, H. (2017), "Guided wave analysis of aircoupled impact-echo in concrete slab", Comput. Concrete, 20(3), 257-262. https://doi.org/10.12989/cac.2017.20.3.257.
- Diab, A.M., Elyamany, H.E., Abd Elmoaty, M. and Shalan, A.H. (2014), "Prediction of concrete compressive strength due to long term sulfate attack using neural network", Alex. Eng. J., 53(3), 627-642. https://doi.org/10.1016/j.aej.2014.04.002.
- Domingo, R. and Hirose, S. (2009), "Correlation between concrete strength and combined nondestructive tests for concrete using high-early strength cement", The Sixth Regional Symposium on Infrastructure Development.
- Hamidian, M., Shariati, A., Khanouki, M.A., Sinaei, H., Toghroli, A. and Nouri, K. (2012), "Application of Schmidt rebound hammer and ultrasonic pulse velocity techniques for structural health monitoring", Scientif. Res. Essay., 7(21), 1997-2001. https://doi.org/10.5897/SRE11.1387.
- Heniegal, A.M. (2012), "Numerical Analysis for predicting of self compacting concrete mixtures using artificial neural networks", J. Engng. Sci., 40(6), 1575-1597.
- Hobbs, B. and Tchoketch Kebir, M. (2007), "Non-destructive testing techniques for the forensic engineering investigation of reinforced concrete buildings", Forensic Sci. Int., 167(2), 167-172. https://doi.org/10.1016/j.forsciint.2006.06.065.
- Hola, J. and Schabowicz, K. (2005), "Application of artificial neural networks to determine concrete compressive strength based on non‐destructive tests", J. Civil Eng. Manage., 11(1), 23-32. https://doi.org/10.3846/13923730.2005.9636329
- Jain, A., Kathuria, A., Kumar, A., Verma, Y. and Murari, K. (2013), "Combined use of non-destructive tests for assessment of strength of concrete in structure", Procedia Eng., 54, 241-251. https://doi.org/10.1016/j.proeng.2013.03.022.
- Khademi, F. and Jamal, S.M. (2016), "Predicting the 28 days compressive strength of concrete using artificial neural network", I-manager's J. Civil Eng., 6, 1.
- Kim, H.J., Park, T.W. and Chung, L. "Intergration of neural networks with NDE for concrete strength prediction",
- Kim, J.I. and Kim, D.K. (2002), "Application of neural networks for estimation of concrete strength", KSCE J. Civil Eng., 6(4), 429-438. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:3(257).
- Kellouche, Y., Boukhatem, B., Ghrici, M. and Tagnit-Hamou, A. (2019), "Exploring the major factors affecting fly-ash concrete carbonation using artificial neural network", Neur. Comput. Appl., 31(2), 969-988. https://doi.org/10.1007/s00521-017-3052-2.
- Lal, T., Sharma, S. and Naval, S. (2013), "Reliability of nondestructive tests for hardened concrete strength", Int. J. Eng. Res. Technol., 2, 1-7.
- Liu, G. and Zheng, J. (2019), "Prediction model of compressive strength development in concrete containing four kinds of gelled materials with the artificial intelligence method", Appl. Sci., 9(6), 1039. https://doi.org/10.3390/app9061039.
- Malek, J. and Kaouther, M. (2014), "Destructive and nondestructive testing of concrete structures", Jordan J. Civil Eng., 159(3269), 1-10.
- Mohammed, B.S., Abdullahi, M. and Hoong, C.K. (2014), "Statistical models for concrete containing wood chipping as partial replacement to fine aggregate", Constr. Build. Mater., 55, 13-19. https://doi.org/10.1016/j.conbuildmat.2014.01.021.
- Nash't, I.H., A'bour, S.H. and Sadoon, A.A. (2005), "Finding an unified relationship between crushing strength of concrete and non destructive tests", Middle East Nondestructive Testing Conference & Exhibition, Citeseer.
- Nasir, M., Gazder, U., Maslehuddin, M., Al-Amoudi, O.S.B. and Syed, I.A. (2020), "Prediction of properties of concrete cured under hot weather using multivariate regression and ANN models", Arab. J. Sci. Eng., 1-13. https://doi.org/10.1007/s13369-020-04403-y.
- Neville, A.M. (1995), Properties of Concrete, Longman, London.
- Nikhil, M.V., Minal, B.R., Deep, C.S., Vijay, G.D., Vishal, T.S. and Shweta, P. (2015), "The use of combined non destructive testing in the concrete strength assessment from laboratory specimens and existing buildings", ICBCCE-2015.
- Ozcan, F., Atis, C.D., Karahan, O., Uncuoglu, E. and Tanyildizi, H. (2009), "Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete", Adv. Eng. Softw., 40(9), 856-863. https://doi.org/10.1016/j.advengsoft.2009.01.005.
- Pann, K.S., Yen, T., Tang, C.W. and Lin, T.D. (2003), "New strength model based on water-cement ratio and capillary porosity", ACI Mater. J., 100(4), 311-318.
- Philips, J. and Mano, R.R. (2016), "Experimental investigation on mechanical properties of polypropylene fibre incorporated concrete with silica fume", Int. J. Civil Eng. Technol., 7, 5.
- Qasrawi, H.Y. (2000), "Concrete strength by combined nondestructive methods simply & reliably predicted", Cement Concrete Res., 30(5), 739-746. https://doi.org/10.1016/S0008-8846(00)00226-X.
- Raju, S. and Dharmar, B. (2016), "Mechanical properties of concrete with copper slag and fly ash by DT and NDT", Periodica Polytechnica Civil Eng., 60(3), 313-322. https://doi.org/10.3311/PPci.7904.
- Sadowski, L., Nikoo, M. and Nikoo, M. (2018), "Concrete compressive strength prediction using the imperialist competitive algorithm", Comput. Concrete, 22(4), 355-363. https://doi.org/10.12989/cac.2018.22.4.355.
- Saridemir, M. (2009), "Predicting the compressive strength of mortars containing metakaolin by artificial neural networks and fuzzy logic", Adv. Eng. Softw., 40(9), 920-927. https://doi.org/10.1016/j.advengsoft.2008.12.008.
- Shariati, M., Mafipour, M.S., Haido, J.H., Yousif, S.T., Toghroli, A., Trung, N.T. and Shariati, A. (2020), "Identification of the most influencing parameters on the properties of corroded concrete beams using an Adaptive Neuro-Fuzzy Inference System (ANFIS)", Steel Compos. Struct., 34(1), 155-170. https://doi.org/10.12989/scs.2020.34.1.155.
- Soshiroda, T., Voraputhaporn, K. and Nozaki, Y. (2006), "Earlystage inspection of concrete quality in structures by combined nondestructive method", Mater. Struct., 39(2), 149. https://doi.org/10.1617/s11527-005-9007-6.
- Topcu, I.B. and Saridemir, M. (2007), "Prediction of properties of waste AAC using artificial neural network", Comput. Mater. Sci., 41(1), 117-125. https://doi.org/10.1016/j.commatsci.2007.03.010.
- Toutanji, H., Delatte, N., Aggoun, S., Duval, R. and Danson, A. (2004), "Effect of supplementary cementitious materials on the compressive strength and durability of short-term cured concrete", Cement Concrete Res., 34(2), 311-319. https://doi.org/10.1016/j.cemconres.2003.08.017.
- Xu, C., Zhang, X., Haido, J.H., Mehrabi, P., Shariati, A., Mohamad, E.T., ... & Wakil, K. (2019), "Using genetic algorithms method for the paramount design of reinforced concrete structures", Struct. Eng. Mech., 71(5), 503-513. https://doi.org/10.12989/sem.2019.71.5.503.