과제정보
This research was supported by the 2021 scientific promotion program funded by Jeju National University Manuscript received
참고문헌
- P. Kearey, M. Brooks, and I. Hill, An introduction to geophysical exploration. John Wiley & Sons, vol.4, 2002.
- R. Philp and P. Crisp, "Surface geochemical methods used for oil and gas prospecting-a review," Journal of Geochemical Exploration, vol.17, no.1, pp.1-34, 1982. DOI: 10.1016/0375-6742(82)90017-6
- R. Saad, M. Nawawi, and E. Mohamad, "Groundwater detection in alluvium using 2-d electrical resistivity tomography (ert)," Electronic Journal of Geotechnical Engineering, vol.17, pp.369-376, 2012.
- D. B. Hoover, D. P. Klein, D. C. Campbell, and E. du Bray, "Geophysical methods in exploration and mineral environmental investigations," Preliminary compilation of descriptive geoenvironmental mineral deposit models: USGS Open-File Report, vol.95, no.831, pp.1-27, 1995.
- N. Abdullahi, I. Osazuwa, P. Sule et al., "Application of integrated geophysical techniques in the investigation of groundwater contamination: A case study of municipal solid waste leachate," Ozean Journal of applied sciences, vol.4, no.1, pp.7-25, 2011.
- G. S. Baker, T. E. Jordan, J. Pardy et al., "An introduction to ground penetrating radar (gpr)," Special Papers-Geological Society of America, vol.432, p.1, 2007. DOI: 10.1130/2007.2432(01)
- W. Daily, A. Ramirez, D. LaBrecque, and J. Nitao, "Electrical resistivity tomography of vadose water movement," Water Resources Research, vol.28, no.5, pp.1429-1442, 1992. DOI: 10.1029/91WR03087
- K. Sudha, M. Israil, S. Mittal, and J. Rai, "Soil characterization using electrical resistivity tomography and geotechnical investigations," Journal of Applied Geophysics, vol.67, no.1, pp.74-79, 2009. DOI: 10.1016/j.jappgeo.2008.09.012
- T. J. Katsube, P. K. Keating, H. McNairn, Y. Das, R. DiLabio, V. Singhroy, S. Connell-Madore, M. E. Best, J. Hunter, R. Klassen et al., "Soil moisture and electrical conductivity prediction and their implication for landmine detection technologies," in Detection and Remediation Technologies for Mines and Minelike Targets IX, vol. 5415. International Society for Optics and Photonics, pp.691-704, 2004. DOI: 10.1117/12.542521.short?SSO=1
- T. J. Katsube, R. A. Klassen, Y. Das, R. Ernst, T. Calvert, G. Cross, J. Hunter, M. Best, R. DiLabio, and S. Connell, "Prediction and validation of soil electromagnetic characteristics for application in landmine detection," in Detection and Remediation Technologies for Mines and Minelike Targets VIII, vol.5089. International Society for Optics and Photonics, pp.1219-1230, 2003. DOI: 10.1117/12.486983.short
- W. Menke, "The resolving power of cross-borehole tomography," Geophysical Research Letters, vol.11, no.2, pp.105-108, 1984. DOI: 10.1029/GL011i002p00105
- M. Perri, G. Cassiani, I. Gervasio, R. Deiana, and A. Binley, "A saline tracer test monitored via both surface and cross-borehole electrical resistivity tomography: Comparison of time-lapse results," Journal of Applied Geophysics, vol.79, pp.6-16, 2012. DOI: 10.1016/j.jappgeo.2011.12.011
- J. G. Webster, Electrical impedance tomography. Taylor & Francis Group, 1990.
- M. Cheney, D. Isaacson, and J. C. Newell, "Electrical impedance tomography," SIAM review, vol.41, no.1, pp.85-101, 1999. DOI: 10.21037/atm.2017.12.06
- G. D'Antona, A. Ferrero, M. Lazzaroni, R. Ottoboni, and E. Samarani, "Active monitoring apparatus for underground pollutant detection based on electrical impedance tomography," in IMTC/2002. Proceedings of the 19th IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No. 00CH37276), vol.1. pp.577-579, 2002. DOI: 10.1109/IMTC.2002.1006906
- R. Stacey, K. Li, R. N. Horne et al., "Electrical impedance tomography (eit) technique for real-time saturation monitoring," in SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2006. DOI: 10.2118/103124-MS
- A. Adler, J. H. Arnold, R. Bayford, A. Borsic, B. Brown, P. Dixon, T. J. Faes, I. Frerichs, H. Gagnon, Y. Garber et al., "Greit: a unifed approach to 2d linear eit reconstruction of lung images," Physiological measurement, vol.30, no.6, p.S35, 2009. DOI: 10.1088/0967-3334/30/6/S03
- D. Holder, "Electrical impedance tomography (eit) of brain function," Brain Topography, vol.5, no.2, pp.87-93, 1992. DOI: 10.1007/BF01129035
- E. K. Murphy, A. Mahara, X. Wu, and R. J. Halter, "Phantom experiments using soft-prior regularization eit for breast cancer imaging," Physiological measurement, vol.38, no.6, p.1262, 2017. DOI: 10.1088/1361-6579/aa691b
- A. P. Bagshaw, A. D. Liston, R. H. Bayford, A. Tizzard, A. P. Gibson, A. T. Tidswell, M. K. Sparkes, H. Dehghani, C. D. Binnie, and D. S. Holder, "Electrical impedance tomography of human brain function using reconstruction algorithms based on the fnite element method," NeuroImage, vol.20, no.2, pp.752-764, 2003. DOI: 10.1016/S1053-8119(03)00301-X
- G. Xu, H. Wu, S. Yang, S. Liu, Y. Li, Q. Yang, W. Yan, and M. Wang, "3-d electrical impedance tomography forward problem with fnite element method," IEEE transactions on magnetics, vol.41, no.5, pp.1832-1835, 2005. DOI: 10.1109/TMAG.2005.846503
- E. Woo, P. Hua, J. Webster, and W. Tompkins, "Finite-element method in electrical impedance tomography," Medical and Biological Engineering and Computing, vol.32, no.5, pp.530-536, 1994. DOI: 10.1007/BF02515311
- J. C. de Munck, T. J. Faes, and R. M. Heethaar, "The boundary element method in the forward and inverse problem of electrical impedance tomography," IEEE transactions on Biomedical Engineering, vol.47, no.6, pp.792-800, 2000. DOI: 10.1109/10.844230
- M. Tarvainen, M. Vauhkonen, T. Savolainen, and J. P. Kaipio, "Boundary element method and internal electrodes in electrical impedance tomography," International journal for numerical methods in engineering, vol.50, no.4, pp.809-824, 2001. https://doi.org/10.1002/1097-0207(20010210)50:4<809::AID-NME52>3.0.CO;2-5
- R. Duraiswami, G. L. Chahine, and K. Sarkar, "Boundary element techniques for effcient 2-d and 3-d electrical impedance tomography," Chemical engineering science, vol.52, no.13, pp.2185-2196, 1997. https://doi.org/10.1016/S0009-2509(97)00044-4
- R. G. Aykroyd and B. A. Cattle, "A boundaryelement approach for the complete-electrode model of eit illustrated using simulated and real data," Inverse Problems in Science and Engineering, vol.15, no.5, pp.441-461, 2007. DOI: 10.1080/17415970600795337
- A. K. Khambampati, B. A. Lee, K. Y. Kim, and S. Kim, "An analytical boundary element integral approach to track the boundary of a moving cavity using electrical impedance tomography," Measurement Science and Technology, vol.23, no.3, p.035401, 2012. DOI: 10.1088/0957-0233/23/3/035401
- W. R. Lionheart, "Eit reconstruction algorithms: pitfalls, challenges and recent developments," Physiological measurement, vol.25, no.1, p.125, 2004. DOI: 10.1088/0967-3334/25/1/021
- E. Beretta, S. Micheletti, S. Perotto, and M. Santacesaria, "Reconstruction of a piecewise constant conductivity on a polygonal partition via shape optimization in eit," Journal of Computational Physics, vol.353, pp.264-280, 2018. https://doi.org/10.1016/j.jcp.2017.10.017
- S. Kim, U. Z. Ijaz, A. K. Khambampati, K. Y. Kim, M. C. Kim, and S. I. Chung, "Moving interfacial boundary estimation in stratifed ?ow of two immiscible liquids using electrical resistance tomography," Measurement Science and Technology, vol.18, no.5, p.1257, 2007. https://doi.org/10.1088/0957-0233/18/5/012
- A. K. Khambampati, S. K. Konki, Y. Han, S. Sharma, and K. Y. Kim, "An effcient method to determine the size of bladder using electrical impedance tomography," in TENCON 2018~2018 IEEE Region 10 Conference. IEEE, 2018, pp. 1933-1936.
- D. Liu, A. K. Khambampati, and J. Du, "A parametric level set method for electrical impedance tomography," IEEE transactions on medical imaging, vol.37, no.2, pp.451-460, 2017. https://doi.org/10.1109/tmi.2017.2756078
- D. Liu, D. Gu, D. Smyl, J. Deng, and J. Du, "B-spline-based sharp feature preserving shape reconstruction approach for electrical impedance tomography," IEEE transactions on medical imaging, vol.38, no.11, pp.2533-2544, 2019. https://doi.org/10.1109/tmi.2019.2905245
- S. K. Sharma, S. K. Konki, A. K. Khambampati, and K. Y. Kim, "Bladder boundary estimation by gravitational search algorithm using electrical impedance tomography," IEEE Transactions on Instrumentation and Measurement, vol.69, no.12, pp.9657-9667, 2020. https://doi.org/10.1109/tim.2020.3006326
- W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, "A survey of deep neural network architectures and their applications," Neurocomputing, vol.234, pp.11-26, 2017. DOI: 10.1016/j.neucom.2016.12.038
- S. K. Konki, A. K. Khambampati, S. K. Sharma, and K. Y. Kim, "A deep neural network for estimating the bladder boundary using electrical impedance tomography," Physiological Measurement, vol.41, no.11, p.115003, 2020. DOI: 10.1088/1361-6579/abaa56
- S. K. Sharma, A. K. Khambampati, and K. Y. Kim, "Estimating aquifer location using deep neural network with electrical impedance tomography," Journal of IKEEE, vol.24, no.4, pp.982-990, 2020. DOI: 10.7471/ikeee.2020.24.4.982
- H. Park, K. Park, S. Mo, and J. Kim, "Deep neural network based electrical impedance tomographic sensing methodology for large-area robotic tactile sensing," IEEE Transactions on Robotics, 2021. DOI: 10.1109/IROS40897.2019.8968532
- M. Vauhkonen, "Electrical impedance tomography and prior information [ph. d. thesis]," University of Kuopio, Kuopio, Finland, 1997. DOI: 10.1.1.208.9639 https://doi.org/10.1.1.208.9639
- O. C. Zienkiewicz and R. L. Taylor, Finite Element Method: Vol. 3: Fluid Dynamics. Elsevier Science & Technology Books, 2000.
- K.-S. Cheng, D. Isaacson, J. Newell, and D. G. Gisser, "Electrode models for electric current computed tomography," IEEE Transactions on Biomedical Engineering, vol.36, no.9, pp.918-924, 1989. DOI: 10.1109/10.35300
- E. Somersalo, M. Cheney, and D. Isaacson, "Existence and uniqueness for electrode models for electric current computed tomography," SIAM Journal on Applied Mathematics, vol.52, no.4, pp.1023-1040, 1992. DOI: 10.1137/0152060
- S. Brenner and R. Scott, The mathematical theory of fnite element methods. Springer Science & Business Media, vol.15, 2007.
- A. Adler and W. R. Lionheart, "Uses and abuses of eidors: an extensible software base for eit," Physiological measurement, vol.27, no.5, p.S25, 2006. DOI: 10.1088/0967-3334/27/5/S03
- A. K. Khambampati, Y. J. Hong, K. Y. Kim, and S. Kim, "A boundary element method to estimate the interfacial boundary of two immiscible stratifed liquids using electrical resistance tomography," Chemical Engineering Science, vol.95, pp.161-173, 2013. DOI: 10.1016/j.ces.2013.03.018
- E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, "Gsa: a gravitational search algorithm," Information sciences, vol.179, no.13, pp.2232-2248, 2009. DOI: 10.1016/j.ins.2009.03.004
- M. M. Lau and K. H. Lim, "Review of adaptive activation function in deep neural network," in 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES). IEEE, pp.686-690, 2018. DOI: 10.1109/IECBES.2018.8626714
- D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv preprint arXiv:1412.6980, 2014.
- J. McNeill, "Electrical conductivity of soils and rocks. geonics limited," Mississauga, Ontario, Technical Note TN-5, 1980.
- M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard et al., "Tensor?ow: A system for large-scale machine learning," in 12th {USENIX} symposium on operating systems design and implementation ({OSDI} 16), pp.265283, 2016. DOI: 10.5555/3026877.3026899
- J. Lee Rodgers and W. A. Nicewander, "Thirteen ways to look at the correlation coeffcient," The American Statistician, vol.42, no.1, pp.59-66, 1988. DOI: 10.1080/00031305.1988.10475524