참고문헌
- Central Quarantine Countermeasure Headquarters (2021). COVID-19 domestic testing and confirmed cases. http://ncov.mohw.go.kr/
- Choi, S. M. (2021). The present and future of vaccines for pandemic. Oughtopia, 36(1), 5-38. http://doi.org/10.32355/oughtopia.2021.06.36.1.5
- Choi, W. J. & Hong, J. S. (2021). A study on the search keyword pattern of COVID-19 in the domestic media. Korean Journal of Communication Studies, 29(2), 29-58. http://doi.org/10.23875/kca.29.2.2
- Jin, S. A., Heo, G. E., Jeong, Y. K., & Song, M. (2013). Topic-Network based topic shift detection on twitter. Journal of the Korean Society for Information Management, 30(1), 285-302. http://doi.org/10.3743/KOSIM.2013.30.1.285
- Kim, J. H. (2021. November 6). 2,248 new confirmed cases... Spread of 2,000 people for four days in a row. Yonhap News TV. Available: https://www.yonhapnewstv.co.kr/news/MYH20211106003000641?did=1825m
- Kim, S. Y. (2021. February 21). To achieve '70% herd immunity'..."Actually, 90% of the nation should be vaccinated". Yonhap News, Available: https://www.yna.co.kr/view/AKR20210219114600530
- Kim, T. J. (2020). COVID-19 news analysis using news big data: focusing on topic modeling analysis. The Journal of the Korea Contents Association, 20(5), 457-466. http://doi.org/10.5392/JKCA.2020.20.05.457
- Park, E. J. & Cho, S. J. (2014). KoNLPy: Korean natural language processing in python. In Proceedings of the 26th Annual Conference on Human and Cognitive Language Technology, Chuncheon, 133-136.
- Park, S. M., Na, C. W., Choi, M. S., Lee, D. H., & On, B. W. (2018). KNU Korean sentiment lexicon - Bi-LSTM-based method for building a Korean sentiment lexicon. Journal of Intelligence and Information Systems, 24(4), 219-240. http://doi.org/10.13088/jiis.2018.24.4.219
- Seo, H. R. & Song, M. (2019). An analysis of the discourse topics of users who exhibit symptoms of depression on social media. Journal of the Korean Society for Information Management, 36(4), 207-226. http://doi.org/10.3743/KOSIM.2019.36.4.207
- Seong, B. L. (2021). COVID-19 vaccine research and development. Orbis Sapientiae, 30, 117-127.
- Yoo, S. Y. & Lim, G. G. (2021). Analysis of news agenda using text mining and semantic network analysis: focused on COVID-19 emotions. Journal of Intelligence and Information Systems, 27(1), 47-64. http://doi.org/10.13088/jiis.2021.27.1.047
- Zhu, Y. J., Kim, D. H., Lee, C. H., & Yi, Y. J. (2019). Investigating major topics through the analysis of depression-related facebook group posts. Journal of the Korean Library and Information Science, 53(4), 171-187. http://doi.org/10.4275/KSLIS.2019.53.4.171
- Blei, D. M., Ng, A. Y., & Jordan, M. (2003). "Latent Dirichlet Allocation." Journal of Machine Learning Research, 3(4/5), 993-1022.
- Domenico, C. & Maurizio, V. (2020). WHO declares COVID-19 a pandemic. Acta Bio Medica: Atenei Parmensis, 91(1), 157-160. PubMed. http://doi.org/10.23750/abm.v91i1.9397
- Hardle, W., Chen, C. H., & Overbeck L. eds. Applied Quantitative Finance. Statistics and Computing.
- JustAnotherArchivist (2020). snscrape 0.3.4. https://github.com/JustAnotherArchivist/snscrape
- Lara, T., Filippo, Q., Eleonora, D., Pietro, D., Marco, V., Francesco, M., & Luigi, L., Pier. (2020). Twitter as a sentinel tool to monitor public opinion on vaccination: an opinion mining analysis from September 2016 to August 2017 in Italy. Human Vaccines & Immunotherapeutics, 16(5), 1062-1069. PubMed. http://doi.org/10.1080/21645515.2020.1714311
- Linton, M., Teo, E., Bommes, E., Chen, C., & H, Wolfgang Karl. (2017). Dynamic Topic Modelling for Cryptocurrency Community Forums. Springer, Berlin, Heidelberg. http://doi.org/10.1007/978-3-662-54486-0_18
- Lucia, P. S., Manuel, T., Juan, Diego, F. P.-B., Almudena, J., Manuel, C., Ernestina, M., Antonio, C. F., Amalia, A., Angel, G. de M., & Alejandro, R. G. (2021). Influenza and Measles-MMR: two case study of the trend and impact of vaccine-related Twitter posts in Spanish during 2015-2018. Human Vaccines & Immunotherapeutics, 1-15. http://doi.org/10.1080/21645515.2021.1877597
- Mathieu, E., Ritchie, H., Ortiz-Ospina, E., Roser, M., Appel, C., Giattino, C., & Rodes-Huirao, L. (2021). A global database of COVID-19 vaccinations. Nat Hum Behav. http://doi.org/10.1038/s41562-021-01122-8
- Rehurek, R. & Sojka, P. (2011). Gensim--python framework for vector space modelling. NLP Centre, Faculty of Informatics, Masaryk University, Brno, Czech Republic, 3(2).
- Samira, Y., Rozita, D., Samira, M., Andrew, P., & Shayan, S. (2021). An analysis of COVID-19 vaccine sentiments and opinions on Twitter. International Journal of Infectious Diseases, 108, 256-262. http://doi.org/10.1016/j.ijid.2021.05.059
- Worldometers.info. (2021). Coronavirus Cases - Worldometer. Available: https://www.worldometers.info/