DOI QR코드

DOI QR Code

A Study on the Safety of Food Packaging Materials from the Perspective of the Circular Economy

순환경제 관점에서 본 플라스틱 식품포장재 재활용의 안전성에 관한 고찰

  • 김미경 (단국대학교 식품공학과)
  • Received : 2021.11.28
  • Accepted : 2021.12.03
  • Published : 2021.12.31

Abstract

Advances in food packaging play an important role in keeping food manufacturing and food supply safe. Food packaging facilitates the storage, handling, transportation and preservation of food, and also contributes to the minimization of food waste. On the other hand, food packaging materials have high production volumes, short usage times, and accelerate the occurrence of environmental problems related to waste. The circular economy has already been introduced to pursue sustainability through resource conservation and recycling, and to reduce waste and carbon emissions. By activating an eco-friendly economic system that minimizes resource depletion and environmental pollution, reducing, reusing, recycling and redesigning the goals of the circular economy will reduce the impact of food packaging on the environment. This review focused on the safety aspects of recycled food packaging as recycling is currently considered an important means of packaging waste management. Assessing the safety of recycled packaging is very important because recycling can increase the levels of potentially hazardous chemicals in packaging and in the food after they are migrated. Various food packaging materials such as plastic, paper and cardboard, aluminum, steel, and multi-material multi-layers packaging are commonly used, but only the recycling safety of plastic food packaging materials, which is the most used and has a significant increase in post-use problem, is discussed in this review.

식품포장의 발전은 식품 제조 및 식품 공급을 안전하게 유지하는 데 매우 중요한 역할을 한다. 식품포장은 식품의 보관, 취급, 운송 및 보존을 용이하게 하며 음식물 쓰레기를 최소화하는데도 기여하고 있다. 반면에 식품포장재는 생산량이 많고 사용 시간이 짧고 폐기물 관리 및 쓰레기와 관련된 환경문제 발생을 가속시키고 있으므로, 포장 기술은 식품 보호와 에너지 및 재료 비용, 환경사회적 의식 고양, 그리고 오염물질 및 도시고형폐기물 처리에 대한 엄격한 규제 등의 문제와 균형을 이루며 발전되어야 한다. 자원의 절약과 재활용을 통해 지속가능성을 추구하며 폐기물 생성 및 탄소배출을 줄이는 순환경제(Circular Economy)가 이미 도입되었다. 자원고갈과 환경오염을 최대한으로 줄이는 친환경 경제시스템을 활성화하여 감량, 재사용, 재활용, 재설계로 순환경제의 목표를 실천하면 식품포장이 환경에 미치는 영향도 줄일 수 있을 것이다. 이 고찰에서는, 재활용이 현재 포장 폐기물을 관리하는 중요한 수단으로 여겨지기 때문에 재활용 식품포장의 안전성 측면에 중점을 두어 설명하였다. 재활용은 잠재적으로 위험한 화학물질이 포장재에서 또는 식품으로 이행된 후의 그 수준을 증가시킬 수 있으므로 재활용 포장재의 안전성을 평가하는 것은 매우 중요하다. 플라스틱, 종이 및 판지, 알루미늄, 강철 및 다중재료 다층 포장 등 다양한 식품포장 재료가 일반적으로 사용되나 여기서는 가장 사용 비중이 크고 사용 후 문제가 심각하게 증가되고 있는 플라스틱 식품포장재의 재활용 안전성에 대해서만 고찰하였다.

Keywords

References

  1. Boulding, K.E. 1966. The Economics of the Coming Spaceship Earth. American Economic Review, Vol. 56, No. 1/2, March 1, 1966: 1-13. http://arachnid.biosci.utexas.edu/courses/THOC/Readings/Boulding_SpaceshipEarth.pdf
  2. Kneese, A. 1988 The Economics of Natural Resources. Population and Development Review. 14: 281-309. doi:10.2307/2808100. JSTOR 2808100.
  3. Pearce, D.W. and Turner, R.K. 1990. Economics natural resources and the environment. Financial Times Press. www.pearson.com. Retrieved 2021-10-07.
  4. European Environment Agency. 2016. Circular Economy in Europe - Developing the Knowledge Base. EEA Report 2/2016.
  5. Grosso, M., Niero, M. and Rigamonti, L. 2017. Circular economy, permanent materials and limitations to recycling: where do we stand and what is the way forward? Waste Manag. Res. 35(8): 793-794. https://doi.org/10.1177/0734242X17724652
  6. Conte, F., Dinkel, F., Kagi, T. and Heim, T. 2014. Permanent materials. Carbotech Final Report. https://carbotech.ch/cms/wp-content/uploads/Final_PeM_Report_Carbotech.pdf. (Accessed 19 December 2017).
  7. European Commission, Brussels, 11.3.2020 COM(2020) 98 Final. Communication from The Commission to The European Parliament, The Council, The European Economic and Social Committee and The Committee of The Regions. A New Circular Economy Action Plan, For a Cleaner and More Competitive Europe.
  8. Muncke, J., Backhaus, T., Geueke, B., Maffini, M.V., Martin, O.V., Myers, J.P., Soto, A.M., Trasande, L., Trier, X. and Scheringer, M. 2017. Scientific challenges in the risk assessment of food contact materials. Environ. Health Perspect. 125(9).
  9. Pivnenko, K., Eriksen, M.K., Martin-Fernandez, J.A., Eriksson, E. and Astrup, T.F. 2016. Recycling of plastic waste: presence of phthalates in plastics from households and industry. Waste Manag. 54: 44-52. https://doi.org/10.1016/j.wasman.2016.05.014
  10. Vapenka, L., Vavrous, A., Votavova, L., Kejlova, K., Dobias, J. and Sosnovcova, J. 2016. Contaminants in the paper-based food packaging materials used in the Czech Republic. J. Food Nutr. Res. 55(4): 361-373.
  11. EC Commission Regulation No 282/2008 on recycled plastic materials and articles intended to come into contact with foods. http://eur-lex.europa.eu/legal-content/EN/ALL/?uri1/4CELEX:32008R0282.
  12. EC 1935/2004. Regulation (EC) No 1935/2004 of the European Parliament and of the Council of 27 October 2004 on materials and articles intended to come into contact with food and repealing Directives 80/590/EEC and 89/109/EEC. http://eur-lex.europa.eu/legal-content/en/ALL/?uri1/4CELEX:32004R1935.
  13. US 21 CFR 170.3(i), Food additives, general provisions, definitions. https://www.ecfr.gov/cgi-bin/text-idx?SID1/44c2a97f757ed27ea971578bb742f0f8b&mc1/4true&node1/4se21.3.170_13&rgn1/4div8.
  14. 식품의약품안전처 2021년 5월 28일. 공고 제2021-234호. 기구 및 용기.포장의 기준 및 규격 일부개정고시(안) 행정예고.
  15. Products Pack. Physical Properties of Plastic Packaging Systems. https://www.productspack.com/physical-properties-of-plasticpackaging-systems/
  16. Impact Consumer Products Group. October 13th, 2020. 10 Factors that effect material selection for barrier food packaging. https://blog.icpg.co/10-factors- that-effect-materialselection-for-barrier-food-packaging-materials.
  17. Joanne and Steffanie's Plastics Web Site. 2007. Classification of plastics. Archived from the original on 2007-12-15.
  18. Ignatyev, I.A., Thielemans,W. and Vander Beke, B. 2014. Recycling of polymer: a review. ChemSusChem 7: 1579-1593. https://doi.org/10.1002/cssc.201300898
  19. Geyer, B., Lorenz, G. and Kandelbauer, A. 2016. Recycling of poly(ethylene terephthalate)- a review focusing on chemical methods. Express Polym. Lett. 10 (7): 559-586. https://doi.org/10.3144/expresspolymlett.2016.53
  20. Ragaert, K., Delva, L. and Van Geem, K. 2017. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 69: 24-58. https://doi.org/10.1016/j.wasman.2017.07.044
  21. Plastics Europe. 2016. Plastics - the Facts. http://www.plasticseurope.org/documents/document/20161014113313-plastics_the_facts_2016_final_version.pdf
  22. US EPA. Plastics: Material-Specific Data. https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/plasticsmaterial-specific-data
  23. Ministry of the Environment, Japan 2018. Japan's resource circulation policy for plastics.
  24. Law, K.L., Starr, N., Siegler, T.R. Jambeck, J.R. Mallos, N.J. and Leonard G.H. 2020. The United States'contribution of plastic waste to land and ocean. Sci. Adv., 6(44): eabd0288. https://doi.org/10.1126/sciadv.abd0288
  25. UN Environment Programme. Plastic Management Infographic. CleanSeas_final_ Infographic.pdf. https://www.unep.org/resources/report/plastic-management-infographic
  26. Hopewell, J., Dvorak, R. and Kosior, E. 2009. Plastics recycling: challenges and opportunities. Philos. Trans. R. Soc. Lond. B, 364 (1526): 2115-2126. https://doi.org/10.1098/rstb.2008.0311
  27. Ko, E., Shim, W., Lee, H., Kang, W., Shin, J., Kwon, O. and Kim J. 2018. The current status of recycling process and problems of recycling according to the packaging waste of Korea. Korean J Packag Sci & Tech 24(2): 65~71. https://doi.org/10.20909/kopast.2018.24.2.65
  28. Al-Sabagh, A.M., Yehia, F.Z., Eshaq, Gh., Rabie, A.M. and ElMetwally, A.E. 2016. Greener routes for recycling of polyethylene terephthalate. Egyption J. Petroleum, 25: 53-64. https://doi.org/10.1016/j.ejpe.2015.03.001
  29. Raheem, A.B., Noor, Z.Z., Hassan, A., Hamid, M.K.Abd., Samsudin, S.A. and Sabeen, A.H. 2019. Current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials production: A review. J. Cleaner Production 225: 1052-1064. https://doi.org/10.1016/j.jclepro.2019.04.019
  30. Joo, M., Suh, S.U., Lee, K.E. and Oh, J.Y. 2020. Study on the market conditions and quality evaluation methods of post-consumer recycled polyethylene terephthalate (PCR PET) flake. Korean J Packag Sci & Tech 26(1): 41~46. https://doi.org/10.20909/kopast.2020.26.1.41
  31. Achilias, D.S., Antonakou, E., Roupakias, C., Megalokonomos, P. and Lappas, A. 2008. Recycling techniques of polyolefins from plastic wastes. Global NEST J. 10 (1): 114-122. https://doi.org/10.30955/gnj.000468
  32. Curtzwiler, G., Vorst, K., Danes, J.E., Auras, R. and Singh, J. 2011. Effect of recycled poly(ethylene terephthalate) content on properties of extruded poly(ethyleneterephthalate) sheets. J. Plast. Film Sheet 27: 65-86. https://doi.org/10.1177/8756087911405824
  33. European Commission, 2019. B-1049 Brussels. A circular economy for plastics - Insights from research and innovation to inform policy and funding decisions.
  34. EU Directive 2018/852 of the European Parliament and of the Council of 30 May 2018 amending Directive 94/62/EC on packaging and packaging waste.
  35. CalRecycle. 2013. Update on AB 341. Legislative Report, Statewide strategies to achieve the 75 percent goal by 2020. https://www.calrecycle.ca.gov
  36. 대한민국 관계부처 합동. 2021년 7월 14일. 한국판 뉴딜 2.0, file:///C:/Users/user/ Downloads/R2107565-1%20(1).pdf
  37. EFSA. 2011. Scientific Opinion on the criteria to be used for safety evaluation of a mechanical recycling process to produce recycled PET intended to be used for manufacture of materials and articles in contact with food. EFSA J. 9(7): 2184. https://www.efsa.europa.eu/en/efsajournal/pub/2184
  38. Rather, I.A., Koh, W.Y., Paek, W.K. and Lim, J. 2017. The Sources of chemical contaminants in food and their health implications. Frontiers in Pharmacology 8: 830. https://doi.org/10.3389/fphar.2017.00830
  39. Canadian Institute of Food Safety. Food safety and the types of food contamination. May 16, 2019. https://www.foodsafety.ca/blog/food-safety-and- types-food-contamination.
  40. Camacho, W., Karlsson, S. 2000. Quality-determination of recycled plastic packaging waste by identification of contaminants by GCeMS after microwave assisted extraction (MAE). Polym. Degrad. Stabil. 71(1): 123-134. https://doi.org/10.1016/S0141-3910(00)00163-4
  41. Dutra, C., Pezo, D., Freire, M.T.D., Nerin, C. and Reyes, F.G.R. 2011. Determination of volatile organic compounds in recycled polyethylene terephthalate and highdensity polyethylene by headspace solid phase microextraction gas chromatography mass spectrometry to evaluate the efficiency of recycling processes. J. Chromatogr. A 1218(10): 1319-1330. https://doi.org/10.1016/j.chroma.2010.12.099
  42. Nerin, C., Albinana, J., Philo, M.R., Castle, L., Raffael, B. and Simoneau, C. 2003. Evaluation of some screening methods for the analysis of contaminants in recycled polyethylene terephthalate flakes. Food Addit. Contam. 20(7): 668-677. https://doi.org/10.1080/0265203031000109503
  43. Geueke, B., Groh, K. and Muncke, J. 2018. Food packaging in the circular economy: Overview of chemical safety aspects for commonly used materials. J. Cleaner Production 193: 491-505. https://doi.org/10.1016/j.jclepro.2018.05.005
  44. Welle, F. 2005. Post-consumer contamination in high-density polyethylene (HDPE) milk bottles and the design of a bottle-to-bottle recycling process. Food Addit. Contam. 22(10): 999-1011. https://doi.org/10.1080/02652030500157742
  45. Bentayeb, K., Batlle, R., Romero, J. and Nerin, C. 2007. UPLC-MS as a powerful technique for screening the nonvolatile contaminants in recycled PET. Anal. Bioanal. Chem. 388: 1031-1038. https://doi.org/10.1007/s00216-007-1341-9
  46. Lopez, M.D.C., Pernas, A.I.A., Lopez, M.J.A., Latorre, A.L., Vilari~no, J.M.L. and Rodriguez, M.V.G. 2014. Assessing changes on poly(ethylene terephthalate) properties after recycling: mechanical recycling in laboratory versus postconsumer recycled material. Mater. Chem. Phys. 147(3): 884-894. https://doi.org/10.1016/j.matchemphys.2014.06.034
  47. Vilaplana, F., Ribes-Greus, A. and Karlsson, S. 2007. Analytical strategies for the quality assessment of recycled high-impact polystyrene: a combination of thermal analysis, vibrational spectroscopy, and chromatography. Anal. Chim. Acta 604(1): 18-28. https://doi.org/10.1016/j.aca.2007.04.046
  48. EU Commission Regulation (EU) No 10/2011. 14 January 2011 on plastic materials and articles intended to come into contact with food. http://eur-lex.europa.eu/legal-content/EN/ALL/?qid1/41511423737824&uri1/4CELEX:32011R0010.
  49. Keresztes, S., Tatar, E., Czegeny, Z., Zaray, G. and Mihucz, V.G. 2013. Study on the leaching of phthalates from polyethylene terephthalate bottles into mineral water. Sci. Total Environ. 458: 451-458. https://doi.org/10.1016/j.scitotenv.2013.04.056
  50. Enneking, P.A. 2006. Phthalates not in plastic food packaging. Environ. Health Perspect. 114(2): A89-A90. https://doi.org/10.1289/ehp.114-a89
  51. Franz, R., Mauer, A. and Welle, F. 2004. European survey on post-consumer poly(-ethylene terephthalate) (PET) materials to determine contamination levels and maximum consumer exposure from food packages made from recycled PET. Food Addit. Contam. 21(3): 265-286. https://doi.org/10.1080/02652030310001655489
  52. Coulier, L., Orbons, H.G.M. and Rijk, R. 2007. Analytical protocol to study the food safety of (multiple-)recycled high-density polyethylene (HDPE) and polypropylene (PP) crates: influence of recycling on the migration and formation of degradation products. Polym. Degrad. Stabil. 92(11): 2016-2025. https://doi.org/10.1016/j.polymdegradstab.2007.07.022
  53. Puype, F., Samsonek, J., Knoop, J., Egelkraut-Holtus, M. and Ortlieb, M. 2015. Evidence of waste electrical and electronic equipment (WEEE) relevant substances in polymeric food-contact articles sold on the European market. Food Addit. Contam. A. 32(3): 410-426.
  54. Widen, H., Leufven, A. and Nielsen, T. 2005. Identification of chemicals, possibly originating from misuse of refillable PET bottles, responsible for consumer complaints about off-odours in water and soft drinks. Food Addit. Contam. 22(7): 681-692. https://doi.org/10.1080/02652030500159987
  55. Whitt, M., Vorst, K., Brown, W., Baker, S. and Gorman, L. 2013. Survey of heavy metal contamination in recycled polyethylene terephthalate used for food packaging. J. Plast. Film Sheet 29(2): 163-173. https://doi.org/10.1177/8756087912467028
  56. Whitt, M., Brown, W., Danes, J.E. and Vorst, K.L. 2016. Migration of heavy metals from recycled polyethylene terephthalate during storage and microwave heating. J. Plast. Film Sheet 32(2): 189-207. https://doi.org/10.1177/8756087915590190
  57. Welle, F. 2011. Twenty years of PET bottle to bottle recycling - an overview. Resour. Conserv. Recycl. 55(11): 865-875. https://doi.org/10.1016/j.resconrec.2011.04.009
  58. Anouar, B.S., Guinot, C., Ruiz, J.C., Charton, F., Dole, P., Joly, C. and Yvan, C. 2015. Purification of post-consumer polyolefins via supercritical CO2 extraction for the recycling in food contact applications. J. Supercrit. Fluids 98: 25-32. https://doi.org/10.1016/j.supflu.2014.12.022
  59. US FDA. 2006. 21CFR170.39. Title 21-Food and Drugs, subchapter b - Food for human consumption. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=170.39
  60. US FDA, 2006. Guidance for Industry: Use of recycled plastics in food packaging: Chemistry considerations. https://www.fda.gov/media/150792/download