DOI QR코드

DOI QR Code

Effect of Pre/Post-Treatment on the Performance of Cu(In,Ga)(S,Se)2 Absorber Layer Manufactured in a Two-Step Process

KCN 에칭 및 CdS 후열처리가 Cu(In,Ga)(S,Se)2 광흡수층 성능에 미치는 영향

  • Kim, A-Hyun (Department of Chemical Engineering, Yeungnam University) ;
  • Lee, GyeongA (Department of Chemical Engineering, Yeungnam University) ;
  • Jeon, Chan-Wook (Department of Chemical Engineering, Yeungnam University)
  • Received : 2021.10.28
  • Accepted : 2021.12.14
  • Published : 2021.12.25

Abstract

To remove the Cu secondary phase remaining on the surface of a CIGSSe absorber layer manufactured by the two-step process, KCN etching was applied before depositing the CdS buffer layer. In addition, it was possible to increase the conversion efficiency by air annealing after forming the CdS buffer layer. In this study, various pre-treatment/post-treatment conditions wereapplied to the S-containing CIGSSe absorber layerbefore and after formation of the CdS buffer layer to experimentally confirm whether similareffects as those of Se-terminated CIGSe were exhibited. Contrary to expectations, it was noted that CdS air annealing had negative effects.

Keywords

Acknowledgement

본 연구는 2020년 산업통상자원부의 재원으로 한국에너지기술평가원(KETEP)의 에너지인력양성사업으로 지원받아 수행한 인력양성 성과입니다(No. 20204010600100).

References

  1. Nakamura, M., Yamaguchi, K., Kimoto, Y., Yasaki, Y., Kato, T., and Sugimoto, H., 2019, "Cd-Free Cu(In,Ga) (Se,S)2 Thin-film solar cell with record efficiency of 23.35%", IEEE J. Photovolt, 9(6), 1863-1867. https://doi.org/10.1109/jphotov.2019.2937218
  2. Omid, M.A., and Cora, O.N., 2020, "State of the art review on the Cu(In,Ga)Se2 thin-film solar cells", Turkish Journal of Electromechanics & Energy, 5(2), 74-82.
  3. Yang, K.J., Kim, S., Kim S.Y., Ahn, K.S., Son, D.H., Kim, S.H., Lee, S.J., Kim, Y.I., Park, S.N., et al., 2019, "Flexible Cu2 ZnSn(S,Se)4 solar cells with over 10% efficiency and methods of enlarging the cell area", Nat. Commun., 10, 2959. https://doi.org/10.1038/s41467-019-10890-x
  4. Niki, S., Contreras, M., Repins, I., Powalla, M., Kushiya, K., Ishizuka, S., and Matsubara, K., 2010, "CIGS absorbers and processes", Prog. Photovolt., 18(6), 453-466. https://doi.org/10.1002/pip.969
  5. Abou-Ras, D., Kostorz, G., Romeo, A., Rudmann, D., and Tiwari, A., 2005, "Structural and chemical investigations of CBD- and PVD-CdS buffer layers and interfaces in Cu(In,Ga)Se-2-based thin film solar cells", Thin Solid Films, 480(6), 118-123.
  6. Ramanathan, K., Noufi, R., Granata, J., Webb, J., and Keane, J., 1998, "Prospects for in situ junction formation in CuInSe2 based solar cells", Sol. Energy Mater. Sol. Cells, 55(1-2), 15-22. https://doi.org/10.1016/S0927-0248(98)00042-7
  7. He, X., Paulauskasb, T., Erciusc, P., Varleyd, J., Baileye, J., Zapalace, G., Poplavskyye, D., Mackiee, N., Baymane, A., Spauldinge, D., Klieb, R., Lordid, V., and Rockett, A., 2017, "Cd doping at PVD-CdS/CuInGaSe2 heterojunctions", Sol. Energy Mater. Sol. Cells, 164, 128-134. https://doi.org/10.1016/j.solmat.2017.01.043
  8. Tsuji, M., Ararmoto, T., Ohyama, H., Hibino, T., and Omura, K., 2000, "Characterization of CdS thin film in high efficient CdS/CdTe solar cells", J. Cryst. Growth, 214-215(7A), 1142-1147. https://doi.org/10.1016/S0022-0248(00)00291-8
  9. Heo, S.G, Cho, H.J., Park, K.W., Ahn, J.K., and Yoon, S.G., 2009, "Electrical properties and reliability of the Photo-conductive CdS thin films for flexible Optoelectronic device applications", J. Korean Inst. Electr, 22(12), 1023-1027.
  10. Rau U., and Schock H.W., 1999, "Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells-recent achievements, current understanding, and future challenges", Appl. Phys., 69, 131-147. https://doi.org/10.1007/s003390050984
  11. Mathew, S., Mukerjee, P.S., and Vijauakumar, K.P., 1995, "Optical and surface properties of spray pyrolysed CdS thin films", Thin Solid Films, 254(1-2), 278-284. https://doi.org/10.1016/0040-6090(94)06257-L
  12. Kim, E.H., Xiao, Y.B., Kong, S.M., and Chung, C.W., 1995, "Investigation on etch characteristics of nanometer-sized magnetic tunnel junction stacks using a HBr/Ar plasma", J. Nanosci, 11(7), 6616-6620.
  13. Ramaiah, K.S., Pilkington, R.D., Hill, A.E., Tomlinson, R.D., and Bhatnagar, A.K., 2001, "Structural and optical investigations on CdS thin films grown by chemical bath technique", Mater. Chem. Phys., 68(1-3), 22-30. https://doi.org/10.1016/S0254-0584(00)00281-9
  14. Song, W.C., 2005, "Effect of reaction temperature on properties of CdS thin films prepared by chemical bath deposition", J. Korean Inst. Surf. Eng., 38(3), 112-117.
  15. Martinez, M.A., Guillen, C., and Herrero, J., 1998, "Morphological and structural studies of CBD-CdS thin films by microscopy and diffraction techniques", Appl. Surf. Sci., 136, 8-16. https://doi.org/10.1016/S0169-4332(98)00331-6
  16. Jaber, A., Alamri, S.N., Aida, M.S., Benghanem, M., and Abdelaziz, A.A., 2012, "Influence of substrate temperature on thermally evaporated CdS thin films properties", J. Alloys Compd., 529, 63-68. https://doi.org/10.1016/j.jallcom.2012.03.093
  17. Moualkia, H., Hariech, S., Aida, M.S., Attaf, N., and Laifa, E.L., 2009, "Growth and physical properties of CdS thin films prepared by chemical bath deposition", J. Phys. D, 42(13), 135404. https://doi.org/10.1088/0022-3727/42/13/135404
  18. Chu, T., Chu, S., Shultz, N., Wang, C., and Wu, C.Q., 1992, "Solution-Grown Cadmium sulfide films for photovoltaic devices", J. Electrochem. Soc., 139(9), 2443-2446. https://doi.org/10.1149/1.2221246
  19. Tanaka, T., Sueishi, T., Saito, K., Guo, Q., Nishio, M., Yu, K.M., and Walukiewicz, W. 2012, "Existence and removal of Cu2Se second phase in coevaporated Cu2ZnSnSe4 thin films", Int. J. Appl. Phys., 111(5), 053522. https://doi.org/10.1063/1.3691964
  20. Cahen, D., and Noufi R., 1989, "Defect chemical explanation for the effect of air anneal on CdS/CuInSe2 solar cell performance", Appl. Phys. Lett., 54(6), 558-560. https://doi.org/10.1063/1.100930
  21. Kwon, S.M., Kim, S.M., and Jeon, C.W., 2016, "Influence of CdS post-deposition treatment on CIGS solar cells", New. Renew. Energy, 12(1), 26-30. https://doi.org/10.7849/ksnre.2016.03.12.1.26
  22. Topic, M., Smole, F., and Furlan, J., 1997, "Examination of blocking current-voltage behaviour through defect chalcopyrite layer in ZnO/CdS/Cu(In,Ga)Se2/Mo solar cell", Sol. Energy, 49(1-4), 311-317.
  23. Sozzi, G., Napoli S.D., Menozzi, R., Werner, F., Siebentritt, S., Jackson, P., and Witte, W., 2017, "Influence of conduction band offsets at Window/Buffer and Buffer/Absorber interfaces on the Roll-Over of J-V curves of CIGS solar cells", Proceedings of 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), 2205-2208.
  24. Kato, T., Kitani, K., Tai, K.F., Kamada, R., Hiroi, H., and Sugimoto, H., 2016, "Characterization of the back contact of CIGS solar cell as the origin of "Rollover" effect", 32nd European Photovoltaic Solar Energy Conference and Exhibition, 1085-1088.
  25. Eisenbarth, T., Unold, T., Caballero, R., Kaufmann, C.A., and Schock, H.W., 2010, "Interpretation of admittance, capacitance-voltage, and current-voltage signatures in Cu(In,Ga)Se2 thin film solar cells", Int. J. Appl. Phys., 107(3), 034509. https://doi.org/10.1063/1.3277043
  26. Li, H., He, D., Zhou, Q., Mao, P., Cao, J., Ding, L., and Wang, J., 2017, "Temperature-dependent Schottky barrier in high-performance organic solar cells", Sci. Rep., 7, 40134. https://doi.org/10.1038/srep40134
  27. Tress, W., Leo, K., and Riede, M., 2012, "Optimum mobility, contact properties, and open-circuit voltage of organic solar cells: A drift-diffusion simulation study", Phys. Rev. B, 85(15), 155201. https://doi.org/10.1103/physrevb.85.155201
  28. Duan, H.S., Yang, W., Bob, B., Hsu, C.J., Lei, B., and Yang, Y., 2013, "The role of sulfur in solution-processed Cu2 ZnSn(S,Se)4 and its effect on defect properties", Adv. Funct. Mater., 23(11), 1466-1471. https://doi.org/10.1002/adfm.201201732
  29. Walter, T., Herberholz, R., Muller, C., and Schock, H.W., 1996, "Determination of defect distributions from admittance measurements and application to Cu(In,Ga)Se2 based heterojunctions", Int. J. Appl. Phys., 80(8), 4411-4420. https://doi.org/10.1063/1.363401
  30. Khoshsirat, N., 2016, "Nanoelectronics and Materials Development", Abhijit Kar, "Copper-Indium-Gallium-diselenide (CIGS) nanocrystalline bulk semiconductor as the absorber layer and its current technological trend and optimization", IntechOpen, London, 42-58.
  31. Kleider, J.P., Gudovskikh, A.S., and Cabarrocas, P.R., 2008, "Determination of the conduction band offset between hydrogenated amorphous silicon and crystalline silicon from surface inversion layer conductance measurements", Appl. Phys. Lett., 92(16), 162101. https://doi.org/10.1063/1.2907695
  32. Lo, Y.S., Choubey, R.K., Yu, W.C., Hsu, W.T., and Lan, C.W., 2011, "Shallow bath chemical deposition of CdS thin film", Thin Solid Films, 520(1), 217-223. https://doi.org/10.1016/j.tsf.2011.07.035
  33. Lee, S., Lee, E. S., Kim, T.Y., Cho, J.S., Eo, Y.J., Yun, J.H., and Cho, A., "Effect of annealing treatment on CdS/CIGS thin film solar cells depending on different CdS deposition temperatures", Sol. Energy, 141, 299-308.
  34. Weinhardt, L., Fuchs, O., Gross, D., Storch, G., and Umbach, E., 2005, "Band alignment at the CdS/Cu(In,Ga)S2 interface in thin-film solar cells", Appl. Phys. Lett., 86(6), 062109. https://doi.org/10.1063/1.1861958