DOI QR코드

DOI QR Code

Electrochemical Performance of CB/SiOx/C Anode Materials by SiOx Contents for Lithium Ion Battery

SiOx 함량에 따른 CB/SiOx/C 음극재의 전기화학적 특성

  • Kim, Kyung Soo (C1 Gas & Carbon Convergent Research, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kang, Seok Chang (C1 Gas & Carbon Convergent Research, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Lee, Jong Dae (Department of Chemical Engineering, Chungbuk National University) ;
  • Im, Ji Sun (C1 Gas & Carbon Convergent Research, Korea Research Institute of Chemical Technology (KRICT))
  • 김경수 (한국화학연구원(KRICT) C1가스 탄소융합연구센터) ;
  • 강석창 (한국화학연구원(KRICT) C1가스 탄소융합연구센터) ;
  • 이종대 (충북대학교 화학공학과) ;
  • 임지선 (한국화학연구원(KRICT) C1가스 탄소융합연구센터)
  • Received : 2020.10.19
  • Accepted : 2020.12.21
  • Published : 2021.02.10

Abstract

In this study, the composite was prepared by mixing SiOx, soft carbon, and carbon black and the electrochemical properties of lithium ion battery were investigated. The content of SiOx added to improve the capacity of the soft carbon anode material was varied to 0, 6, 8, 10, 20 wt%, and carbon black was added as a structural stabilizer for reducing the volume expansion of SiOx. The physical properties of prepared CB/SiOx/C composite were investigated through XRD, SEM, EDS and powder resistance analysis. In addition, the electrochemical properties of prepared composite were observed through the charge/discharge capacity, rate and impedance analysis of the lithium ion battery. The prepared CB/SiOx/C composite had an inner cavity capable of mitigating the volume expansion of SiOx by adding carbon black. The formed internal cavity showed a low initial efficiency when the SiOx content was less than 8 wt%, and low cycle stability when the content of SiOx was less than 20 wt%. The CB/SiOx/C composite containing 10 wt% of SiOx showed an initial discharge capacity of 537 mAh/g, a capacity retention rate of 88%, and a rate of 79 at 2C/0.1C. SiOx was added to improve the capacity of the soft carbon anode material, and carbon black was added as a structural stabilizer to buffer the volume change of SiOx. In order to use the CB/SiOx/C composite as a high-efficiency anode material, the mechanism of the optimal SiOx and the use of carbon black as a structural stabilizer was discussed.

본 연구에서는 실리콘 산화물, 소프트 카본, 카본 블랙을 혼합하여 복합체를 제조하였으며, 이차전지의 음극 특성을 고찰하였다. 이때, 소프트 카본 음극재의 용량 향상을 위하여 첨가된 실리콘 산화물 함량을 0, 6, 8, 10, 20 wt%로 달리하였으며, 카본 블랙은 실리콘 산화물의 부피 팽창 완화를 위한 구조 안정제로 첨가되었다. 제조된 CB/SiOx/C 복합체의 물리적 특성은 XRD, SEM, EDS 및 분체 저항 분석을 통하여 조사되었다. 또한 제조된 복합체의 전기화학적 특성은 리튬 이차전지의 충·방전 사이클, 율속 및 임피던스 분석을 통하여 관찰되었다. CB/SiOx/C 복합체는 카본 블랙 첨가에 의하여 실리콘 산화물의 부피 팽창을 완화시킬 수 있는 내부 공동이 형성되었으며, 카본 블랙과 실리콘 산화물 입자가 고르게 분포되었다 형성된 내부 공동은 실리콘 산화물 함량이 8 wt% 미만에서는 낮은 초기 효율 보이며, 20 wt% 이상에서는 낮은 사이클 안정성을 보였다. 실리콘 산화물이 10 wt% 첨가된 CB/SiOx/C 복합체는 537 mAh/g 초기 방전 용량, 88 %의 용량 유지율과 2C/0.1C에서 79 율속 특성을 보였다. 이는 소프트 카본 음극재의 용량을 향상시키기 위해 실리콘 산화물을 첨가하였고, 실리콘 산화물의 부피 변화를 완충하기 위해 구조 안정제로 카본 블랙을 첨가하였다. CB/SiOx/C 복합체를 고효율의 음극재로 사용하기 위해 최적의 실리콘 산화물 함량 및 구조 안정제로서의 카본 블랙의 메커니즘을 논의하였다.

Keywords

References

  1. J. S. Kim, W. Pfleging, R. Kohler, H. J. Seifert, T. Y. Kim, D. J. Byun, H. G. Jung, W. C. Choi, and J. K. Lee, Three-dimensional silicon/carbon coreshell electrode as an anode material for lithium-ion batteries, J. Power Sources, 279, 13-20 (2015). https://doi.org/10.1016/j.jpowsour.2014.12.041
  2. D. BarTow, E. Peled, and L. Burstein, A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-ion batteries, J. Electrochem. Soc., 146, 824-832 (1999). https://doi.org/10.1149/1.1391688
  3. J. W. Hwang and J. D. Lee, Electrochemical characteristics of PFO pitch anode prepared by chemical activation for lithium ion battery, Korean Chem. Eng. Res., 55, 307-312 (2017). https://doi.org/10.9713/kcer.2017.55.3.307
  4. C. Wang, H. Zhao, J. Wang, J. Wang, and P. Lv, Electrochemical performance of modified artificial graphite as anode material for lithium ion batteries, Ionics, 19, 221-226 (2013). https://doi.org/10.1007/s11581-012-0733-9
  5. H. L. Tsai, C. T. Hsieh, J. Li, and Y. A. Gandomi, Enabling high rate charge and discharge capability, low internal resistance, and excellent cycle ability for Li-ion batteries utilizing graphene additives, Electrochim. Acta, 273, 200-207 (2018). https://doi.org/10.1016/j.electacta.2018.03.154
  6. V. A. Sethuraman, K. Kowolik, and V. Srinivasan, Increased cycling efficiency and rate capability of copper coated silicon anodes in lithium ion batteries, J. Power Sources, 196, 393-398 (2011). https://doi.org/10.1016/j.jpowsour.2010.06.043
  7. M. Dubarry, C. Truchot, M. Cugnet, B. Y. Liaw, K. Gering, S. Sazhin, D. Jamison, and C. Michelbacher, Evaluation of commercial lithium ion cells based on composite positive electrode for plugin hybrid electric vehicle applications. Part I: Initial characterizations, J. Power Sources, 196, 10328-10335 (2011). https://doi.org/10.1016/j.jpowsour.2011.08.077
  8. K. S. Kim, J. S. Im, J. D. Lee, J. H. Kim, and J. U. Hwang, Effects of pitch softening point based on soft carbon anode for initial efficiency and rate performance, Appl. Chem. Eng., 30, 331-336 (2019). https://doi.org/10.14478/ACE.2019.1015
  9. C. Tao, W. Ji, Z. Qinglin, and S. Xin, Recent advancement of SiOx based anodes for lithium-ion batteries, J. Power Sources, 363, 126-144 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.073
  10. W. Jing, Z. Hailei, H. Jianchao, W. Chunmei, and W. Jie, Nano-sized SiOx/C composite anode for lithium ion batteries, J. Power Sources, 196, 4811-4815 (2011). https://doi.org/10.1016/j.jpowsour.2011.01.053
  11. X. Quan, J. K. Sun, Y. X. Yin, and Y. G. Guo, Facile synthesis of blocky SiOx/C with graphite-like structure for high-performance lithium-ion battery anodes, Adv. Funct. Mater., 28, 1705235 (2018). https://doi.org/10.1002/adfm.201705235
  12. Y. N. Jo, Y. Kim, J. S. Kim, J. H. Song, K. J. Kim, C. Y. Kwag, D. J. Lee, C. W. Park, and Y. J. Kim, Si-graphite composites as anode materials for lithium secondary batteries, J. Power Sources, 195, 6031-6036 (2010). https://doi.org/10.1016/j.jpowsour.2010.03.008
  13. Y. Qingfeng, Z. Fenggang, Z. Yanming, L. Zhiyong, and Y. Danlin, Evaluation and performance improvement of Si/SiOx/C based composite as anode material for lithium ion batteries, Electrochim. Acta, 115, 16-21 (2014). https://doi.org/10.1016/j.electacta.2013.10.106
  14. G. Li, J. Y. Li, F. S. Yue, Q. Xu, T. T. Zuo, Y. X. Yin, and Y. G. Guo, Reducing the volume deformation of high capacity SiOx/G/C anode toward industrial application in high energy density lithium-ion batteries, Nano Energy, 60, 485-492 (2019). https://doi.org/10.1016/j.nanoen.2019.03.077
  15. J. Park, S. S. Park, and Y. S. Won, In situ XRD study of the structural changes of graphite anodes mixed with SiOx during lithium insertion and extraction in lithium ion batteries, Electrochim. Acta, 107, 467-472 (2013). https://doi.org/10.1016/j.electacta.2013.06.059
  16. J. H. Lee, W. J. Kim, J. Y. Kim, S. H. Lim and S. M. Lee, Spherical silicon/graphite/carbon composites as anode material for lithium-ion batteries, J. Power Sources, 176, 353-358 (2008). https://doi.org/10.1016/j.jpowsour.2007.09.119
  17. Q. Zhang, N. Lin, T. Xu, K. Shen, T. Li, Y. Han, J. Zhou, and Y. Qian, Scalable synthesis of carbon stabilized SiO/graphite sheets composite as anode for high-performance Li ion batteries, RSC Adv., 7, 39762-39766 (2017). https://doi.org/10.1039/C7RA05829B
  18. H. C. Tao, X. L. Yang, L. L. Zhang, and S. B. Ni, Double-walled core-shell structured Si@SiO2@C nanocomposite as anode for lithium-ion batteries, Ionics, 20, 1547-1552 (2014). https://doi.org/10.1007/s11581-014-1138-8
  19. Y. Liu, Y. X. Lu, Y. S. Xu, Q. S. Meng, J. C. Gao, Y. G. Sun, Y. S. Hu, B. B. Chang, C. T. Liu, and A. M. Cao, Pitch-derived soft carbon as stable anode material for potassium ion batteries, Adv. Mater., 32, 2000505 (2020).
  20. S. J. Chae, M. S. Ko, S. K. Park, N. H. Kim, J. Y. Ma, and J. P. Cho, Micron-sized Fe-Cu-Si ternary composite anodes for high energy Li-ion batteries, Energy Environ. Sci., 9, 1251-1257 (2016). https://doi.org/10.1039/C6EE00023A
  21. C. Xiao, P. He, J. Ren, M. Yue, Y. Huang, and X. He, Walnut-structure Si-G/C materials with high coulombic efficiency for long-life lithium ion batteries, RSC Adv., 8, 27580-27586 (2018). https://doi.org/10.1039/C8RA04804E
  22. Y. Yang, Z. Wang, Y. Zhou, H. Guo, and X. Li, Synthesis of porous Si/graphite/carbon nanotubes@c composites as a practical high-capacity anode for lithium-ion batteries, Mater. Lett., 199, 84-87 (2017). https://doi.org/10.1016/j.matlet.2017.04.057
  23. W. R. Liu, J. H. Wang, H. C. Wu, D. T. Shieh, M. H. Yang, and N. L. Wu, Electrochemical characterizations on Si and C-coated Si particle electrodes for lithium-ion batteries, J. Electrochem. Soc., 152, 1719-1725 (2005).