DOI QR코드

DOI QR Code

Surface-modified Cellulose Nanofibril Surfactants for Stabilizing Oil-in-Water Emulsions and Producing Polymeric Particles

표면 개질된 나노피브릴화 셀룰로오스를 이용한 에멀젼 안정화 및 고분자 입자 제조

  • Kim, Bo-Young (Electronic Convergence Materials & Device Research Center, Korea Electronics Technology Institute) ;
  • Moon, Jiyeon (Nano Materials & Component Research Center, Korea Electronics Technology Institute) ;
  • Yoo, Myong Jae (Electronic Convergence Materials & Device Research Center, Korea Electronics Technology Institute) ;
  • Kim, Seonmin (Nano Materials & Component Research Center, Korea Electronics Technology Institute) ;
  • Kim, Jeongah (Electronic Convergence Materials & Device Research Center, Korea Electronics Technology Institute) ;
  • Yang, Hyunseung (Electronic Convergence Materials & Device Research Center, Korea Electronics Technology Institute)
  • 김보영 (한국전자기술연구원 융복합전자소재연구센터) ;
  • 문지연 (한국전자기술연구원 나노융합연구센터) ;
  • 유명재 (한국전자기술연구원 융복합전자소재연구센터) ;
  • 김선민 (한국전자기술연구원 나노융합연구센터) ;
  • 김정아 (한국전자기술연구원 융복합전자소재연구센터) ;
  • 양현승 (한국전자기술연구원 융복합전자소재연구센터)
  • Received : 2020.12.23
  • Accepted : 2021.01.19
  • Published : 2021.02.10

Abstract

In this work, the surface of hydrophilic cellulose nanofibrils (CNFs) was modified precisely by varying amounts of cetyltrimethylammonium bromide (CTAB) to produce CNF-based particle surfactants. We found that a critical CTAB density was required to generate amphiphilic CTAB-grafted CNF (CNF-CTAB). Compared to pristine CNF, CNF-CTAB was highly efficient at stabilizing oil-in-water Pickering emulsions. To evaluate their effectiveness as particle surfactants, the surface coverage of oil-in-water emulsion droplets was determined by changing the CNF-CTAB concentration in the aqueous phase. Furthermore, styrene-in-water stabilized by CNF-CTAB surfactants was thermally polymerized to produce CNF-stabilized polystyrene (PS) particles, offering a great potential for various applications including pharmaceuticals, cosmetics, and petrochemicals.

Keywords

References

  1. A. D. Dinsmore, M. F. Hsu, M. G. Nikolaides, M. Marquez, A. R. Bausch, and D. A. Weitz, Colloidosomes: Selectively permeable capsules composed of colloidal particles, Science, 298, 1006-1009 (2002). https://doi.org/10.1126/science.1074868
  2. B. P. Binks, Particles as surfactants - Similarities and differences, Curr. Opin. Colloid Interface Sci., 7, 21-41 (2002). https://doi.org/10.1016/S1359-0294(02)00008-0
  3. R. Aveyard, B. P. Binks, and J. H. Clint, Emulsions stabilised solely by colloidal particles, Adv. Colloid Interface Sci., 100-102, 503-546 (2003). https://doi.org/10.1016/S0001-8686(02)00069-6
  4. K. Stratford, R. Adhikari, I. Pagonabarraga, J. C. Desplat, and M. E. Cates, Chemistry: Colloidal jamming at interfaces: A route to fluid-bicontinuous gels, Science, 309, 2198-2201 (2005). https://doi.org/10.1126/science.1116589
  5. E. Vignati, R. Piazza, and T. P. Lockhart, Pickering emulsions: Interfacial tension, colloidal layer morphology, and trapped-particle motion, Langmuir, 19, 6650-6656 (2003). https://doi.org/10.1021/la034264l
  6. F. Tu, B.J. Park, and D. Lee, Thermodynamically stable emulsions using Janus dumbbells as colloid surfactants, Langmuir, 29, 12679-12687 (2013). https://doi.org/10.1021/la402897d
  7. T. Chen, P. J. Colver, and S. A. F. Bon, Organic-inorganic hybrid hollow spheres prepared from TiO2-stabilized Pickering emulsion polymerization, Adv. Mater., 19, 2286-2289 (2007). https://doi.org/10.1002/adma.200602447
  8. P. Van Rijn, N. C. Mougin, D. Franke, H. Park, and A. Boker, Pickering emulsion templated soft capsules by self-assembling cross-linkable ferritin-polymer conjugates, Chem. Commun., 47, 8376-8378 (2011). https://doi.org/10.1039/c1cc12005k
  9. J. Xu, A. Ma, Z. Xu, X. Liu, D. Chu, and H. Xu, Synthesis of Au and Pt hollow capsules with single holes via Pickering emulsion strategy, J. Phys. Chem. C., 119, 28055-28060 (2015). https://doi.org/10.1021/acs.jpcc.5b09478
  10. D. Lee and D. A. Weitz, Double emulsion-templated nanoparticle colloidosomes with selective permeability, Adv. Mater., 20, 3498-3503 (2008). https://doi.org/10.1002/adma.200800918
  11. D. Lee and D. A. Weitz, Nonspherical colloidosomes with multiple compartments from double emulsions, Small, 5, 1932-1935 (2009). https://doi.org/10.1002/smll.200900357
  12. S. Cauvin, P. J. Colver, and S. A. F. Bon, Pickering stabilized miniemulsion polymerization: Preparation of clay armored latexes, Macromolecules, 38, 7887-7889 (2005). https://doi.org/10.1021/ma051070z
  13. M. Tang, X. Wang, F. Wu, Y. Liu, S. Zhang, X. Pang, X. Li, and H. Qiu, Au nanoparticle/graphene oxide hybrids as stabilizers for Pickering emulsions and Au nanoparticle/graphene oxide@polystyrene microspheres, Carbon, 71, 238-248 (2014). https://doi.org/10.1016/j.carbon.2014.01.034
  14. H. Zhou, T. Shi, X. Zhou, Preparation of polystyrene/SiO2 microsphere via Pickering emulsion polymerization: Synergistic effect of SiO2 concentrations and initiator sorts, Appl. Surf. Sci., 266, 33-38 (2013). https://doi.org/10.1016/j.apsusc.2012.11.054
  15. D. Yin, Q. Zhang, C. Yin, Y. Jia, and H. Zhang, Effect of particle coverage on morphology of SiO2-covered polymer microspheres by Pickering emulsion polymerization, Colloids Surfaces A Physicochem. Eng. Asp., 367, 70-75 (2010). https://doi.org/10.1016/j.colsurfa.2010.06.021
  16. K. Y. A. Lin, H. Yang, C. Petit, and W. der Lee, Magnetically controllable Pickering emulsion prepared by a reduced graphene oxide-iron oxide composite, J. Colloid Interface Sci., 438, 296-305 (2015). https://doi.org/10.1016/j.jcis.2014.10.015
  17. J. Zhou, X. Qiao, B.P. Binks, K. Sun, M. Bai, Y. Li, and Y. Liu, Magnetic Pickering emulsions stabilized by Fe3O4 nanoparticles, Langmuir, 27, 3308-3316 (2011). https://doi.org/10.1021/la1036844
  18. H. Yang, D. J. Kang, K. H. Ku, H. H. Cho, C. H. Park, J. Lee, D. C. Lee, P. M. Ajayan, and B. J. Kim, Highly luminescent polymer particles driven by thermally reduced graphene quantum dot surfactants, ACS Macro Lett., 3, 985-990 (2014). https://doi.org/10.1021/mz5003855
  19. I. Capron, O. J. Rojas, R. Bordes, Behavior of nanocelluloses at interfaces, Curr. Opin. Colloid Interface Sci., 29, 83-95 (2017). https://doi.org/10.1016/j.cocis.2017.04.001
  20. M. Matos, A. Marefati, R. Bordes, G. Gutierrez, M. Rayner, Combined emulsifying capacity of polysaccharide particles of different size and shape, Carbohydr. Polym., 169, 127-138 (2017). https://doi.org/10.1016/j.carbpol.2017.04.006
  21. Y. Goi, S. Fujisawa, T. Saito, K. Yamane, K. Kuroda, and A. Isogai, Dual functions of TEMPO-oxidized cellulose nanofibers in oil-in-water emulsions: A Pickering emulsifier and a unique dispersion stabilizer, Langmuir, 35, 10920-10926 (2019). https://doi.org/10.1021/acs.langmuir.9b01977
  22. K. Xhanari, K. Syverud, and P. Stenius, Emulsions stabilized by microfibrillated cellulose: The effect of Hydrophobization, concentration and O/W ratio, J. Dispers. Sci. Technol., 32, 447-452 (2011). https://doi.org/10.1080/01932691003658942
  23. N. Nikfarjam, N. Taheri Qazvini, and Y. Deng, Surfactant free Pickering emulsion polymerization of styrene in w/o/w system using cellulose nanofibrils, Eur. Polym. J., 64, 179-188 (2015). https://doi.org/10.1016/j.eurpolymj.2015.01.007
  24. Z. Hu, S. Ballinger, R. Pelton, and E. D. Cranston, Surfactant-enhanced cellulose nanocrystal Pickering emulsions, J. Colloid Interface Sci., 439, 139-148 (2015). https://doi.org/10.1016/j.jcis.2014.10.034
  25. J. Ojala, M. Visanko, O. Laitinen, M. Osterberg, J.A. Sirvio, H. Liimatainen, Emulsion stabilization with functionalized cellulose nanoparticles fabricated using deep eutectic solvents, Molecules, 23, 2765-2782 (2018). https://doi.org/10.3390/molecules23112765
  26. M. Andresen and P. Stenius, Water-in-oil emulsions stabilized by hydrophobized microfbrillated cellulose, J. Dispers. Sci. Technol., 28, 837-844 (2007). https://doi.org/10.1080/01932690701341827
  27. I. Kalashnikova, H. Bizot, B. Cathala, and I. Capron, New Pickering emulsions stabilized by bacterial cellulose nanocrystals, Langmuir, 27, 7471-7479 (2011). https://doi.org/10.1021/la200971f
  28. A. G. Cunha, J. B. Mougel, B. Cathala, L. A. Berglund, and I. Capron, Preparation of double Pickering emulsions stabilized by chemically tailored nanocelluloses, Langmuir, 30, 9327-9335 (2014). https://doi.org/10.1021/la5017577
  29. I. Kalashnikova, H. Bizot, P. Bertoncini, B. Cathala, and I. Capron, Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions, Soft Matter, 9, 952-959 (2013). https://doi.org/10.1039/C2SM26472B
  30. C. Wen, Q. Yuan, H. Liang, and F. Vriesekoop, Preparation and stabilization of d-limonene Pickering emulsions by cellulose nanocrystals, Carbohydr. Polym., 112, 695-700 (2014). https://doi.org/10.1016/j.carbpol.2014.06.051
  31. T. Winuprasith and M. Suphantharika, Microfibrillated cellulose from mangosteen (Garcinia mangostana L.) rind: Preparation, characterization, and evaluation as an emulsion stabilizer, Food Hydrocoll., 32, 383-394 (2013). https://doi.org/10.1016/j.foodhyd.2013.01.023
  32. M. Visanko, H. Liimatainen, J.A. Sirviö, J. P. Heiskanen, J. Niinimäki, and O. Hormi, Amphiphilic cellulose nanocrystals from acid-free oxidative treatment: Physicochemical characteristics and use as an oil-water stabilizer, Biomacromolecules, 15, 2769-2775 (2014). https://doi.org/10.1021/bm500628g
  33. Y. Zhang, V. Karimkhani, B. T. Makowski, G. Samaranayake, and S. J. Rowan, Nanoemulsions and nanolatexes stabilized by hydrophobically functionalized cellulose nanocrystals, Macromolecules, 50, 6032-6042 (2017). https://doi.org/10.1021/acs.macromol.7b00982
  34. Q. Li, Y. Wang, Y. Wu, K. He, Y. Li, X. Luo, B. Li, C. Wang, and S. Liu, Flexible cellulose nanofibrils as novel Pickering stabilizers: The emulsifying property and packing behavior, Food Hydrocoll., 88, 180-189 (2019). https://doi.org/10.1016/j.foodhyd.2018.09.039
  35. C. A. Carrillo, T. E. Nypelö, O. J. Rojas, Cellulose nanofibrils for one-step stabilization of multiple emulsions (W/O/W) based on soybean oil, J. Colloid Interface Sci., 445, 166-173 (2015). https://doi.org/10.1016/j.jcis.2014.12.028
  36. D. Klemm, F. Kramer, S. Moritz, T. Lindstrom, M. Ankerfors, D. Gray, and A. Dorris, Nanocelluloses: A new family of nature-based materials, Angew. Chemie - Int. Ed., 50, 5438-8466 (2011) https://doi.org/10.1002/anie.201001273
  37. N. Lavoine, I. Desloges, A. Dufresne, and J. Bras, Microfibrillated cellulose - Its barrier properties and applications in cellulosic materials: A review, Carbohydr. Polym., 90, 735-764 (2012). https://doi.org/10.1016/j.carbpol.2012.05.026
  38. A. Isogai, T. Saito, and H. Fukuzumi, TEMPO-oxidized cellulose nanofibers, Nanoscale, 3, 71-85 (2011). https://doi.org/10.1039/C0NR00583E
  39. H. P. S. Abdul Khalil, A. H. Bhat, and A. F. Ireana Yusra, Green composites from sustainable cellulose nanofibrils: A review, Carbohydr. Polym., 87, 963-979 (2012). https://doi.org/10.1016/j.carbpol.2011.08.078
  40. L. Bai, S. Huan, W. Xiang, L. Liu, Y. Yang, R. W. N. Nugroho, Y. Fan, and O. J. Rojas, Self-assembled networks of short and long chitin nanoparticles for oil/water interfacial superstabilization, ACS Sustain. Chem. Eng., 7, 6497-6511 (2019). https://doi.org/10.1021/acssuschemeng.8b04023
  41. W. Chen, H. Yu, S.Y. Lee, T. Wei, J. Li, and Z. Fan, Nanocellulose: A promising nanomaterial for advanced electrochemical energy storage, Chem. Soc. Rev., 47, 2837-2872 (2018). https://doi.org/10.1039/C7CS00790F
  42. S. Alila, S. Boufi, M. N. Belgacem, and D. Beneventi, Adsorption of a cationic surfactant onto cellulosic fibers I. Surface charge effects, Langmuir, 21, 8106-8113 (2005). https://doi.org/10.1021/la050367n
  43. B. L. Tardy, S. Yokota, M. Ago, W. Xiang, T. Kondo, R. Bordes, and O. J. Rojas, Nanocellulose-surfactant interactions, Curr. Opin. Colloid Interface Sci., 29, 57-67 (2017). https://doi.org/10.1016/j.cocis.2017.02.004
  44. D. K. Owens and R. C. Wendt, Estimation of the surface free energy of polymers, J. Appl. Polym. Sci., 13, 1741-1747 (1969). https://doi.org/10.1002/app.1969.070130815
  45. E. Y. Bryleva, N. A. Vodolazkaya, N. O. Mchedlov-Petrossyan, L. V. Samokhina, N. A. Matveevskaya, and A. V. Tolmachev, Interfacial properties of cetyltrimethylammonium-coated SiO2 nanoparticles in aqueous media as studied by using different indicator dyes, J. Colloid Interface Sci., 316, 712-722 (2007). https://doi.org/10.1016/j.jcis.2007.07.036
  46. C. Tang, S. Spinney, Z. Shi, J. Tang, B. Peng, J. Luo, and K. C. Tam, Amphiphilic cellulose nanocrystals for enhanced Pickering emulsion stabilization, Langmuir, 34, 12897-12905 (2018). https://doi.org/10.1021/acs.langmuir.8b02437
  47. H. Fukuzumi, T. Saito, and A. Isogai, Influence of TEMPO-oxidized cellulose nanofibril length on film properties, Carbohydr. Polym., 93, 172-177 (2013). https://doi.org/10.1016/j.carbpol.2012.04.069
  48. L. Bai, S. Lv, W. Xiang, S. Huan, D. J. McClements, and O. J. Rojas, Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals: 1. Formation and stability, Food Hydrocoll., 96, 699-708 (2019). https://doi.org/10.1016/j.foodhyd.2019.04.038