DOI QR코드

DOI QR Code

Investigation of Optimum Condition of Heat Treatment and Flow to Improve H2S Adsorption Capacity for Practical use of an Activated Carbon Tower

활성탄 흡착탑의 실용화를 위한 최적 유동특성 선정 및 열처리 조건에 따른 황화수소 포집능 향상 연구

  • Jang, Younghee (Department of Environmental Energy Engineering, Graduate School of Kyonggi University) ;
  • Kim, Bong-Hwan (Department of Automotive Engineering, Gyeongnam National University of Science and Technology) ;
  • Kim, Sung Su (Department of Environmental Energy Engineering, Kyonggi University)
  • 장영희 (경기대학교 일반대학원 환경에너지공학과) ;
  • 김봉환 (경남과학기술대학교) ;
  • 김성수 (경기대학교 환경에너지공학과)
  • Received : 2020.10.14
  • Accepted : 2021.01.18
  • Published : 2021.02.10

Abstract

This study was conducted to improve the operating conditions of an adsorption tower filled with potassium impregnated activated carbon for high hydrogen sulfide capture capacity. Heat treatment modified the surface properties of activated carbon, and ultimately determined its adsorption capacity. The activated carbon doped with potassium showed 57 times more adsorption at room temperature than that of using the raw adsorbent. It is believed that uniform pore formation and strong bonding of the potassium on the surface of carbon contributed to the chemical and physical absorption of hydrogen sulfide. The SEM analysis on the surface structure of various commercial carbons showed that the modification of surface properties through the heat treatment generated the destruction of pore structures resulted in the decrease of the absorption performance. The pressure drop across the activated carbon bed was closely related with the grain size and shape. The optimum size of irregularly shaped activated carbon granules was 2~4 mesh indicating economical feasibility.

본 연구에서는 다양한 환경 공정에서 사용되는 황화수소 제거용 흡착탑 효율을 향상시키기 위해 유동 분석 및 흡착성능 향상 연구를 수행하였다. 연구를 위해 상업적으로 이용 가능한 다양한 활성탄에 칼륨(potassium, K)을 담지하여 개질 활성탄을 제조하였다. 또한 열처리 여부에 따라 흡착 성능과 열처리 과정에서 변화된 표면 특성 사이의 높은 상관관계를 고찰하고자 하였다. 함침법을 통해 K로 코팅된 활성탄은 57배 이상의 흡착 성능을 확인하였다. 이는 균일한 기공 형성과 탄소 표면의 K의 강한 결합은 황화수소의 화학적 및 물리적 흡수에 기여한다고 판단하였다. 다양한 상용 활성탄의 표면 구조에 대한 SEM 분석은 열처리를 통한 표면 특성의 변형으로 인해 기공 구조가 파괴되어 흡수 성능이 저하되는 것으로 확인하였다. 각 활성탄의 압력 손실 특성은 입자 크기와 모양에서 가장 낮은 압력 손실이 관찰되었다. 따라서 2~4 mesh 크기의 탄소입자 범위와 불규칙한 모양이 흡착탑의 성능을 향상시키고 경제적 효율성을 확보할 수 있다고 제안하였다.

Keywords

References

  1. S. Y. Choi, D. H. Han, and S. S. Kim, A study on the optimization of activated carbon adsorbent preparation condition and evaluation of application supporting of K-Fe-Li ternary metal ions for improving adsorption capacity of hydrogen sulfide (H2S), Clean Tech., 25(3), 189-197 (2019).
  2. G. H. Park, G. Y. Oh, J. H. Lee, K. H. Jung, and S. Y. Jung, Comparison of odor characteristics emitted from the 3 type of sewage treatment plant, Korean J. Odor Res. Eng., 4(4), 196-206 (2013).
  3. S. Han, C. Lee, H. Joo, K. Kim, S. Kim, H. Ryu, J. Lee, H. Kim, and J. Han, Performance assessment of H2S, NH3, and VOCs sensors for field application, J. Odor Indoor Environ., 18(3), 261-271 (2019). https://doi.org/10.15250/joie.2019.18.3.261
  4. S. J. Jeong, A study on the health effect to determine an H2S emission standard for incinerators, J. Odor Indoor Environ., 15(2), 119-125 (2016). https://doi.org/10.15250/joie.2016.15.2.119
  5. McGraw-Hill, Poisoning and Drug Overdose [cited 2020 Feb. 18], 224-225 (2004).
  6. United states department of labor, Safety and topics: hydrogen sulfide [cited 2020 Feb. 18]; Available from: http://www.osha.gov/dts/chemicalsampling/data/CH_246800.html.
  7. L. T. Popoola, A. S. Grema, G. K. Latinwo, B. Gutti, and A. S. Balogun, Corrosion problems during oil and gas production and its mitigation, Int. J. Ind. Chem., 4(1) (2013).
  8. D. S. Park, J. Y. Lim, Y. G. Cho, S. J. Song, and J. H. Kim, A study on the comparison on adsorption characteristics of zeolite and DETOX for the removal of H2S, Journal of Korea Academia-Industrial Cooperation Society, 15(7), 4675-4681 (2014). https://doi.org/10.5762/KAIS.2014.15.7.4675
  9. Ministry of Agriculture, Food and Rural Affairs, Utilization of Discarded Tree Debris for Commercial Production of Activated Carbon (2000) Available from: http://www.ndsl.kr/ndsl/search/detail/report/reportSearchResultDetail.do?cn=TRKO200200034599.
  10. W. T. Kwon, N. K. Park, J. H. Kim, T. J. Lee, and C. K. Yi, Preparation of high attrition resistance sorbents on high temperature desulfurization, Theories and Applications of Chemical Engineering, 2(1), 709-712 (1996).
  11. S. Y. Choi, D. H. Han, and S. S. Kim, A study on the optimization of active material and preparation of granular adsorbent of metal oxide-based adsorbent for adsorption of hydrogen sulfide (H2S), Appl. Chem. Eng., 30(4), 460-465 (2019). https://doi.org/10.14478/ACE.2019.1041
  12. S. Y. Choi, Y. H. Jang, and S. S. Kim, A study on the optimization of sewage sludge-based adsorbent Ccarbonization condition for improving adsorption capacity of hydrogen sulfide (H2S), Appl. Chem. Eng., 29(6), 765-771 (2018). https://doi.org/10.14478/ACE.2018.1094
  13. N. Laosiripojana, R. Sitthikhankaew, S. Predapitakkun, R. W. Kiattikomol, S. Pumhiran, and S. Assabumrungrat, Comparative study of hydrogen sulfide adsorption by using alkaline impregnated activated carbons for hot fuel gas purification, Energy Procedia, 9, 15-24 (2011). https://doi.org/10.1016/j.egypro.2011.09.003
  14. R. Yan, D. T. Liang, L. Tsen, and H. J. Tay, Kinetics and mechanisms of H2S adsorption by alkaline activated carbon, Environ. Sci. Tech., 36, 4460-4466 (2002). https://doi.org/10.1021/es0205840
  15. D. Y. Choi, J. W. Lee, S. C. Jang, B. S. Ahn, and D. K. Choi, Adsorption dynamics of hydrogen sulfide in impregnated activated carbon bed, Adsorption, 14(4-5), 533-538 (2008). https://doi.org/10.1007/s10450-008-9118-9
  16. L. Barelli, G. Bidini, N. D. Arespacochaga, L. Perez, and E. Sisani, Biogas use in high temperature fuel cells: Enhancement of KOH-KI activated carbon performance toward H2S removal, Int. J. Hydrog. Energy, 42, 10341-10353 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.021
  17. N. Rakmak, W. Wiyaratn, C. Bunyakan, and J. Chungsiriporn, Synthesis of Fe/MgO nano-crystal catalysts by sol-gel method for hydrogen sulfide removal, Chem. Eng. J., 162, 84-90 (2010). https://doi.org/10.1016/j.cej.2010.05.001
  18. R. Darby and R. P. Chhabra, Chemical Engineering Fluid Mechanics, 3rd edition, CRC Press (2016).
  19. T. Hayashi, T. G. Lee, M. Hazelwood, E. Hedrick, and P. Biswas, Characterization of activated carbon fiber filters for pressure drop, submicrometer particulate collection, and mercury capture, J. Air Waste Manag. Assoc., 50, 922-929 (2000). https://doi.org/10.1080/10473289.2000.10464136
  20. S. W. Lee, S. K. Bae, J. H. Kwon, Y. S. Na, C. D. An, Y. S. Yoon, and S. K. Song, Correlations between pore structure of activated carbon and adsorption characteristics of acetone vapor, J. Korea Soc. Environ. Eng., 27(6), 620-625 (2005).
  21. F. Adib, A. Bagreev, and T. J. Bandosz, Effect of surface characteristics of wood-based activated carbons on adsorption of hydrogen sulfide, J. Colloid Interface Sci., 214, 407-415 (1999). https://doi.org/10.1006/jcis.1999.6200
  22. D. Y. Choi, J. W. Lee, S. C. Jang, B. S. Ahn, and D. K. Choi, Adsorption dynamics of hydrogen sulfide in impregnated activated carbon bed, Adsorption, 14(4-5), 533-538 (2008). https://doi.org/10.1007/s10450-008-9118-9
  23. N. Rakmak, W. Wiyaratn, C. Bunyakan, and J. Chungsiriporn, Synthesis of Fe/MgO nano-crystal catalysts by sol-gel method for hydrogen sulfide removal, Chem. Eng. J., 162, 84-90 (2010). https://doi.org/10.1016/j.cej.2010.05.001
  24. C. S. G. Phillips, II (B). Organic and biochemical, The chromatography of gases and vapours, Discuss. Faraday Soc., 7, 241-248 (1949). https://doi.org/10.1039/df9490700241
  25. R. M., Bruce, F. Y., Donald, and H. O., Theodore, Fundamentals of Fluid Mechanics, 4rd edition, John Wiley & Sons, Inc., 475-481 (2002).