References
- Y. C. Yeh, B. Creran, and V. M. Rotello, Gold nanoparticles: Preparation, properties, and applications in bionanotechnology, Nanoscale, 4, 1871-1880 (2012). https://doi.org/10.1039/C1NR11188D
- X. Ma, S. He, B. Qiu, F. Luo, L. Guo, and Z. Lin, Noble metal nanoparticle-based multicolor immunoassays: An approach toward visual quantification of the analytes with the naked eye, ACS Sens., 4, 782-791 (2019). https://doi.org/10.1021/acssensors.9b00438
- M. Haruta, and M. Date, Advances in the catalysis of Au nanoparticles, Appl. Catal. A-Gen., 222, 427-437 (2001). https://doi.org/10.1016/S0926-860X(01)00847-X
- J. Turkevich, P. C. Stevenson, and J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discuss. Faraday Soc., 11, 55-75 (1951). https://doi.org/10.1039/df9511100055
- K. G. Lee, J. Hong, K. W. Wang, N. S. Heo, D. H. Kim, S. Y. Lee, T. J. Park, and T. J. Park, In vitro biosynthesis of metal nanoparticles in microdroplets, ACS Nano, 6, 6998-7008 (2012). https://doi.org/10.1021/nn302043q
- J. Zong, S. L. Cobb, and N. R. Cameron, Peptide-functionalized gold nanoparticles: Versatile biomaterials for diagnostic and therapeutic applications, Biomater. Sci., 5, 872-886 (2017). https://doi.org/10.1039/C7BM00006E
- P. Zhao, X. Feng, D. Huang, G. Yang, and D. Astruc, Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles, Coord. Chem. Rev., 287, 114-136 (2015). https://doi.org/10.1016/j.ccr.2015.01.002
- A. Saha, J. Adamcik, S. Bolisetty, S. Handschin, and R. Mezzenga, Fibrillar networks of glycyrrhizic acid for hybrid nanomaterials with catalytic features, Angew. Chem. Int. Ed., 127, 5498-5502 (2015). https://doi.org/10.1002/ange.201411875
- P. R. Selvakannan, A. Swami, D. Srisathiyanarayanan, P. S. Shirude, R. Pasricha, A. B. Mandale, and M. Sastry, Synthesis of aqueous Au core-Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase-transferred silver nanoparticles at the air-water interface, Langmuir, 20, 7825-7836 (2004). https://doi.org/10.1021/la049258j
- J. Xie, J. Y. Lee, D. I. Wang, and Y. P. Ting, Silver nanoplates: From biological to biomimetic synthesis, ACS Nano, 1, 429-439 (2007). https://doi.org/10.1021/nn7000883
- S. Si, R. R. Bhattacharjee, A. Banerjee, and T. K. Mandal, A mechanistic and kinetic study of the formation of metal nanoparticles by using synthetic tyrosine‐based oligopeptides, Chem. Eur. J., 12, 1256-1265 (2006). https://doi.org/10.1002/chem.200500834
- K. I. Min, D. H. Kim, H. J. Lee, L. Lin, and D. P. Kim, Direct synthesis of a covalently self-assembled peptide nanogel from a tyrosine-rich peptide monomer and its biomineralized hybrids, Angew. Chem. Int. Ed., 130, 5732-5736 (2018). https://doi.org/10.1002/ange.201713261
- V. Paribok, Y. O. Kim, S. K. Choi, G. Y. Jung, J. Lee, K. T. Nam, V. E. Agabekov, and Y. S. Lee, Tailoring a Tyrosine-rich peptide into size-and thickness-controllable nanofilms, ACS Omega, 3, 3901-3907 (2018). https://doi.org/10.1021/acsomega.8b00395
- H. I. Joschek and S. I. Miller, Photooxidation of phenol, cresols, and dihydroxybenzenes, J. Am. Chem. Soc., 88, 3273-3281 (1966). https://doi.org/10.1021/ja00966a019
- G. K. Deokar, and A. G. Ingale, Green synthesis of gold nanoparticles (Elixir of Life) from banana fruit waste extract - An efficient multifunctional agent, RSC Adv., 6, 74620-74629 (2016). https://doi.org/10.1039/C6RA14567A
- J. L. Burt, C. Gutierrez-Wing, M. Miki-Yoshida, and M. Jose-Yacaman, Noble-metal nanoparticles directly conjugated to globular proteins, Langmuir, 20, 11778-11783 (2004). https://doi.org/10.1021/la048287r
- C. Berthomieu, and R. Hienerwadel, Vibrational spectroscopy to study the properties of redox-active tyrosines in photosystem II and other proteins, Biochim. Biophys. Acta-Bioenerg., 1707, 51-66 (2005). https://doi.org/10.1016/j.bbabio.2004.03.011
- T. Serizawa, Y. Hirai, and M. Aizawa, Novel synthetic route to peptide-capped gold nanoparticles, Langmuir, 25, 12229-12234 (2009). https://doi.org/10.1021/la9021799
- Y. S. Seo, E. Y. Ahn, J. Park, T. Y. Kim, J. E. Hong, K. Kim, Y. Park, and Y. Park, Catalytic reduction of 4-nitrophenol with gold nanoparticles synthesized by caffeic acid, Nanoscale Res. Lett., 12, 7 (2017). https://doi.org/10.1186/s11671-016-1776-z
- Y. Choi, M. J. Choi, S. H. Cha, Y. S. Kim, S. Cho, and Y. Park, Catechin-capped gold nanoparticles: Green synthesis, characterization, and catalytic activity toward 4-nitrophenol reduction, Nanoscale Res. Lett., 9, 103 (2014). https://doi.org/10.1186/1556-276X-9-103
- P. Suchomel, L. Kvitek, R. Prucek, A. Panacek, A. Halder, S. Vajda, and R. Zboril, Simple size-controlled synthesis of Au nanoparticles and their sizedependent catalytic activity, Sci. Rep., 8, 4589 (2018). https://doi.org/10.1038/s41598-018-22976-5