DOI QR코드

DOI QR Code

Facile Synthesis of Gold Nanoparticles Using Tyrosine-Rich Peptide and Its Applications to Catalytic Reduction of 4-Nitrophenol

타이로신이 풍부한 펩타이드를 사용한 금 나노입자의 손쉬운 합성과 4-니트로페놀의 촉매 환원 응용

  • Hur, Yun-Mi (Biomedical Convergence Science and Technology, Kyungpook National University) ;
  • Min, Kyoung-Ik (Biomedical Convergence Science and Technology, Kyungpook National University)
  • 허윤미 (경북대학교 의생명융합공학과) ;
  • 민경익 (경북대학교 의생명융합공학과)
  • Received : 2020.12.04
  • Accepted : 2020.12.17
  • Published : 2021.02.10

Abstract

In this study, we studied a facile method for the synthesis of stable and nearly spherical gold nanoparticles using a tyrosine-rich peptide, Tyr-Tyr-Gly-Tyr-Tyr (YYGYY), as both the reducing and capping agent. The peptide coated spherical and polycrystalline gold nanoparticles with diameters from 3 to 15 nm were successfully synthesized by varying the concentration of the peptide and metal precursor under UV irradiation. The nanoparticles were then characterized by transmission electron microscopy (TEM), UV-Vis spectroscopy, scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDS), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD). Furthermore, the catalytic activity of gold nanoparticles was confirmed by the reduction of 4-nitrophenol to 4-aminophenol, in which the catalytic reaction rate constant was 7.3 × 10-3 s-1.

본 연구에서는 타이로신이 풍부한 펩타이드, Tyr-Tyr-Gly-Tyr-Tyr (YYGYY)를 환원제 및 안정화제로 사용하여 구형의 금 나노 입자의 간단한 합성 방법을 연구하였다. 펩타이드로 둘러싸인 구형의 다결정 금 나노 입자는 UV 조사 하에서 펩타이드 및 금속 전구체의 농도를 조절하여 3~15 nm 크기로 합성되었다. 합성된 금 나노 입자의 특성을 확인하기 위하여 투과 전자 현미경(TEM), 자외선-가시광선 분광광도계(UV-Vis spectroscopy), 주사 투과 전자 현미경 및 에너지 분산 X선 분광법(STEM-EDS), 푸리에 변환 적외선 분광법(FT-IR), X선 회절 분석법(XRD)을 사용하여 분석하였다. 또한, 합성된 금 나노입자는 4-니트로페놀의 환원 반응을 통해 7.3 × 10-3 s-1의 반응속도 상수를 갖는 촉매 활성을 확인하였다.

Keywords

References

  1. Y. C. Yeh, B. Creran, and V. M. Rotello, Gold nanoparticles: Preparation, properties, and applications in bionanotechnology, Nanoscale, 4, 1871-1880 (2012). https://doi.org/10.1039/C1NR11188D
  2. X. Ma, S. He, B. Qiu, F. Luo, L. Guo, and Z. Lin, Noble metal nanoparticle-based multicolor immunoassays: An approach toward visual quantification of the analytes with the naked eye, ACS Sens., 4, 782-791 (2019). https://doi.org/10.1021/acssensors.9b00438
  3. M. Haruta, and M. Date, Advances in the catalysis of Au nanoparticles, Appl. Catal. A-Gen., 222, 427-437 (2001). https://doi.org/10.1016/S0926-860X(01)00847-X
  4. J. Turkevich, P. C. Stevenson, and J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discuss. Faraday Soc., 11, 55-75 (1951). https://doi.org/10.1039/df9511100055
  5. K. G. Lee, J. Hong, K. W. Wang, N. S. Heo, D. H. Kim, S. Y. Lee, T. J. Park, and T. J. Park, In vitro biosynthesis of metal nanoparticles in microdroplets, ACS Nano, 6, 6998-7008 (2012). https://doi.org/10.1021/nn302043q
  6. J. Zong, S. L. Cobb, and N. R. Cameron, Peptide-functionalized gold nanoparticles: Versatile biomaterials for diagnostic and therapeutic applications, Biomater. Sci., 5, 872-886 (2017). https://doi.org/10.1039/C7BM00006E
  7. P. Zhao, X. Feng, D. Huang, G. Yang, and D. Astruc, Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles, Coord. Chem. Rev., 287, 114-136 (2015). https://doi.org/10.1016/j.ccr.2015.01.002
  8. A. Saha, J. Adamcik, S. Bolisetty, S. Handschin, and R. Mezzenga, Fibrillar networks of glycyrrhizic acid for hybrid nanomaterials with catalytic features, Angew. Chem. Int. Ed., 127, 5498-5502 (2015). https://doi.org/10.1002/ange.201411875
  9. P. R. Selvakannan, A. Swami, D. Srisathiyanarayanan, P. S. Shirude, R. Pasricha, A. B. Mandale, and M. Sastry, Synthesis of aqueous Au core-Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase-transferred silver nanoparticles at the air-water interface, Langmuir, 20, 7825-7836 (2004). https://doi.org/10.1021/la049258j
  10. J. Xie, J. Y. Lee, D. I. Wang, and Y. P. Ting, Silver nanoplates: From biological to biomimetic synthesis, ACS Nano, 1, 429-439 (2007). https://doi.org/10.1021/nn7000883
  11. S. Si, R. R. Bhattacharjee, A. Banerjee, and T. K. Mandal, A mechanistic and kinetic study of the formation of metal nanoparticles by using synthetic tyrosine‐based oligopeptides, Chem. Eur. J., 12, 1256-1265 (2006). https://doi.org/10.1002/chem.200500834
  12. K. I. Min, D. H. Kim, H. J. Lee, L. Lin, and D. P. Kim, Direct synthesis of a covalently self-assembled peptide nanogel from a tyrosine-rich peptide monomer and its biomineralized hybrids, Angew. Chem. Int. Ed., 130, 5732-5736 (2018). https://doi.org/10.1002/ange.201713261
  13. V. Paribok, Y. O. Kim, S. K. Choi, G. Y. Jung, J. Lee, K. T. Nam, V. E. Agabekov, and Y. S. Lee, Tailoring a Tyrosine-rich peptide into size-and thickness-controllable nanofilms, ACS Omega, 3, 3901-3907 (2018). https://doi.org/10.1021/acsomega.8b00395
  14. H. I. Joschek and S. I. Miller, Photooxidation of phenol, cresols, and dihydroxybenzenes, J. Am. Chem. Soc., 88, 3273-3281 (1966). https://doi.org/10.1021/ja00966a019
  15. G. K. Deokar, and A. G. Ingale, Green synthesis of gold nanoparticles (Elixir of Life) from banana fruit waste extract - An efficient multifunctional agent, RSC Adv., 6, 74620-74629 (2016). https://doi.org/10.1039/C6RA14567A
  16. J. L. Burt, C. Gutierrez-Wing, M. Miki-Yoshida, and M. Jose-Yacaman, Noble-metal nanoparticles directly conjugated to globular proteins, Langmuir, 20, 11778-11783 (2004). https://doi.org/10.1021/la048287r
  17. C. Berthomieu, and R. Hienerwadel, Vibrational spectroscopy to study the properties of redox-active tyrosines in photosystem II and other proteins, Biochim. Biophys. Acta-Bioenerg., 1707, 51-66 (2005). https://doi.org/10.1016/j.bbabio.2004.03.011
  18. T. Serizawa, Y. Hirai, and M. Aizawa, Novel synthetic route to peptide-capped gold nanoparticles, Langmuir, 25, 12229-12234 (2009). https://doi.org/10.1021/la9021799
  19. Y. S. Seo, E. Y. Ahn, J. Park, T. Y. Kim, J. E. Hong, K. Kim, Y. Park, and Y. Park, Catalytic reduction of 4-nitrophenol with gold nanoparticles synthesized by caffeic acid, Nanoscale Res. Lett., 12, 7 (2017). https://doi.org/10.1186/s11671-016-1776-z
  20. Y. Choi, M. J. Choi, S. H. Cha, Y. S. Kim, S. Cho, and Y. Park, Catechin-capped gold nanoparticles: Green synthesis, characterization, and catalytic activity toward 4-nitrophenol reduction, Nanoscale Res. Lett., 9, 103 (2014). https://doi.org/10.1186/1556-276X-9-103
  21. P. Suchomel, L. Kvitek, R. Prucek, A. Panacek, A. Halder, S. Vajda, and R. Zboril, Simple size-controlled synthesis of Au nanoparticles and their sizedependent catalytic activity, Sci. Rep., 8, 4589 (2018). https://doi.org/10.1038/s41598-018-22976-5