DOI QR코드

DOI QR Code

Effects of Fermented Oyster Extract Supplementation on Body Composition, Muscular Strengths and Blood Muscle Growth Fact ors in Elderly Women

발효굴 섭취가 중년 여성의 신체조성, 근력 및 혈중 근성장 인자에 미치는 영향

  • Park, Joung-Hyun (Smart Marine Bio Center, Marine Bioprocess Co., Ltd.) ;
  • Kim, Dong-Seok (Department of Sports and Health Science, Kyungsung University) ;
  • Lee, Bae-Jin (Smart Marine Bio Center, Marine Bioprocess Co., Ltd.) ;
  • Her, Jung-Soo (Yonsei University Nutrition & Health) ;
  • Jeon, Byeong Hwan (Department of Sports and Health Science, Kyungsung University)
  • 박정현 (스마트해양바이오센터, (주)마린바이오프로세스) ;
  • 김동석 (경성대학교, 스포츠건강학과) ;
  • 이배진 (스마트해양바이오센터, (주)마린바이오프로세스) ;
  • 허정수 (연세대학교, 연세생활건강) ;
  • 전병환 (경성대학교, 스포츠건강학과)
  • Received : 2021.10.25
  • Accepted : 2021.11.22
  • Published : 2021.12.31

Abstract

Crassostrea gigas were fermented using L. brevis BJ20 to prepare fermented oyster extract (FO). The participants of this study were randomly assigned to FO and placebo (CON) groups. The FO group was given 1.0 g of FO supplementation and the CON group was given sucrose each day for eight weeks. The effects of FO supplementation on body composition, muscula r strength, and blood factors associated with muscle growth were assessed. The FO supplement was enriched with arginine (6,183.3 mg), phenylalanine (217.9 mg), leucine (122.6 mg), isoleucine (59.8 mg), valine (16.4 mg), and γ-amino butyric acid (GABA, 1,053.7 mg). The total fat was significantly decreased in the FO group compared with the CON group (p < 0.05). 60D/S Ext.T/Wo rk and 60D/S Flex.T/Work concomitantly with 60D/S Flex.PeakTQ/BW were significantly increase d by FO treatment compared to CON group (p < 0.05). However, posture stability was not significa ntly different between the groups. The levels of angiotensin-converting enzyme were significantly decreased within the FO group (p < 0.05). The FO group showed significantly decreased levels of tumor necrosis factor-α and increased levels of human growth hormone compared with the CON group (p < 0.01). The levels of insulin-like growth factor-1 increased (p < 0.01) in the FO group while that of creatine kinase and triglyceride decreased significantly compared with the CON group (p < 0.05). These results demonstrated that FO supplementation is effective in preventing sarcopenic obesity and maintaining and strengthening muscular function in elderly wom en. Hence, FO supplements can be used as functional ingredients for these benefits.

Keywords

Acknowledgement

이 논문은 2019년 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(발효굴추출물을 이용한 운동능력 개선 개별인정형 기능성식품 개발, 20190014)

References

  1. Korea Health Industry Development Institute. 2019. National nutrition statistics, daily food intake amount, https://www.khidi.or.kr/kps/dhraStat/result2?menuId=MENU01653&year=2019 on September 15, 2021.
  2. Choi JD, Hwang SM, Kang JY, Kim SH Kim, Kim JG and Oh KS. 2012. Food Components Characteristic of Oysters Produced in Korea. J. Agri. & Life Sci., 46, 105-115.
  3. Wegh CAM, Geerlings SY, Knol J, Roeselers G and Belzer C. 2019. Postbiotics and Their Potential Applications in Early Life Nutrition and Beyond. Int J Mol Sci 20, 4673. https://doi.org/10.3390/ijms20194673
  4. Lee, B. J., Kim, J. S., Kang, Y. M., Lim, J. H., Kim, Y. M., Lee, M. S., Jeong, M. H., Ahn, C. B., Je, J. Y. 2010. Antioxidant activity and γ-aminobutyric acid (GABA) content in sea tangle fermented by Lactobacillus brevis BJ20 isolated from traditional fermented foods. Food Chem. 122, 271-276. https://doi.org/10.1016/j.foodchem.2010.02.071
  5. Lee, B. J., Senevirathne, M., Kim, J. S., Kim, Y. M., Lee, M. S., Jeong, M. H., Kang, Y. M., Kim, J. I., Nam, B. H., Ahn, C. B., Je, J. Y. 2010. Protective effect of fermented sea tangle against ethanol and carbon tetrachloride-induced hepatic damage in Sprague-Dawley rats. Food Chem Toxicol. 48, 1123-8. https://doi.org/10.1016/j.fct.2010.02.006
  6. Reid, S. N., Ryu, J. K., Kim, Y. and Jeon, B. H. 2018. The effects of fermented Laminaria japonica on short-term working memory and physical fitness in the elderly. Evid-Based Compl. Alt. 12, 8109621.
  7. Park, H. J., Shim, H. S., Lee, G. R., Yoon, K. H., Kim, J. H., Lee, J. M,, ... and Shim, I. 2019. A randomized, double-blind, placebo-controlled study on the memory-enhancing effect of lactobacillus fermented Saccharina japonica extract. Eur. J. Integr. Med. 28, 39-46. https://doi.org/10.1016/j.eujim.2019.04.006
  8. Molagoda, I. M. N., Karunarathne, W. A. H. M., Choi, Y. H., Park, E. K., Jeon, Y. J., Lee, B. J., ... and Kim, G. Y. 2019. Fermented oyster extract promotes osteoblast differentiation by activating the Wnt/β-catenin signaling pathway, leading to bone formation. Biomolecules. 9, 711. https://doi.org/10.3390/biom9110711
  9. Lee, H., Hwang-Bo, H., Ji, S. Y., Kim, M. Y., Kim, S. Y., Woo, M., ... and Choi, Y. H. 2020. Effect of fermented oyster extract on growth promotion in Sprague -Dawley rats. Integr. Med. Res. 9, 100412. https://doi.org/10.1016/j.imr.2020.100412
  10. Jeong, A., Park, B. C., Kim, H. Y., Choi, J. Y., Cheon, J., Park, J. H. ... and Kim, K. 2021. Efficacy and safety of fermented oyster extract for height of children with short stature: a randomized placebo-controlled trial. Integr. Med. Res. 10, 100691. https://doi.org/10.1016/j.imr.2020.100691
  11. Reid, S. N., Park, J. H., Kim, Y., Kwak, Y. S., and Jeon, B. H. 2020. In Vitro and In Vivo Effects of Fermented Oyster-Derived Lactate on Exercise Endurance Indicators in Mice. Int. J. Environ. Res. Public Health 17, 8811. https://doi.org/10.3390/ijerph17238811
  12. Inoue, K., Shirai, T., Ochiai, H., Kasao, M., Hayakawa, K., Kimura, M., Sansawa, H. 2003. Blood-pressurelowering effect of a novel fermented milk containing gamma-aminobutyric acid (GABA) in mild hypertensives. Eur. J. Clin. Nutr. 57, 490-5. https://doi.org/10.1038/sj.ejcn.1601555
  13. Allan, V. and Kalueff, P. T. 2005. Mouse grooming microstructure is a reliable anxiety marker bidirectionally sensitive to GABAergic drugs, Eur. J. Pharmacol. 508, 147-153. https://doi.org/10.1016/j.ejphar.2004.11.054
  14. Abdou, A. M., Higashiguchi, S., Horie, K., Kim, M., Hatta, H. and Yokogoshi, H. 2006. Relaxation and immunity enhancement effects of γ-Aminobutyric acid (GABA) administration in humans. BioFactors 26, 201-208. https://doi.org/10.1002/biof.5520260305
  15. Kim, S. S., Oh, S. H., Jeong, M. H., Cho, S. C., Kook, M. C., Lee, S. H., Pyun, Y. R., and Lee, H. Y. 2010. Sleep-inductive effect of GABA on the fermentation of mono sodium glutamate (MSG). Korean J. Food Sci. Technol. 42, 142-146.
  16. Kim, S., Jo, K., Hong, K. B., Han, S. H. and Suh, H. J. 2019. GABA and l-theanine mixture decreases sleep latency and improves NREM sleep. Pharm. Biol. 57, 64-72. https://doi.org/10.1080/13880209.2018.1557698
  17. Kanako, S., Takumi, K., Takeshi, A., Chanakarn, J., Noriyuki, Y. and Thanutchaporn, K. 2021. Dietary GABA and its combination with vigabatrin mimic calorie restriction and induce antiobesity-like effects in lean mice. J. Funct. Foods 78, 104367. https://doi.org/10.1016/j.jff.2021.104367
  18. Cavagnini, F., Invitti, C., Pinto, M., Maraschini, C., Di Landro, A., Dubini, A. and Marelli, A. 1980. Effect of acute and repeated administration of gamma aminobutyric acid (GABA) on growth hormone and prolactin secretion in man. Acta Endocrinol. (Copenh). 93, 149-54. https://doi.org/10.1530/acta.0.0930149
  19. Turner, J. D., Rotwein, P. and Novakofski, J. and Bechtel, P. J. 1988. Induction of mRNA for IGF-I and -II during growth hormone-stimulated muscle hypertrophy, Am. J. Physiol. 255(4 Pt 1), E513-7.
  20. De Palo, E. F., Gatti, R., Antonelli, G. and Spinella, P. 2006. Growth hormone isoforms, segments/fragments: does a link exist with multifunctionality? Clin. Chim. Acta 364, 77-81. https://doi.org/10.1016/j.cca.2005.06.010
  21. Bunout, D., Barrera, G., Leiva, L., Gattas, V., de la Maza, M. P., Avendano, M. and Hirsch, S. 2006. Effects of vitamin D supplementation and exercise training on physical performance in Chilean vitamin D deficient elderly subjects. Exp. Gerontol. 41, 746-52. https://doi.org/10.1016/j.exger.2006.05.001
  22. Philippou, A., Maridaki, M. and Halapas, A. 2007. Koutsilieris M. The role of the insulin-like growth factor 1 (IGF-1) in skeletal muscle physiology. In Vivo. 21, 45-54.
  23. Powers, M. 2012. GABA supplementation and growth hormone response. Med. Sport Sci. 59, 36-46. https://doi.org/10.1159/000341944
  24. Ministry of Food and Drug Safety. 2019. Food standard and specification, chapter 8 general analysis methods.
  25. Choi, W., Reid, S. N., Ryu, J., Kim, Y., Jo, Y. H. and Jeon, B. H. 2016. Effects of γ-aminobutyric acid-enriched fermented sea tangle (Laminaria japonica) on brain derived neurotrophic factor-related muscle growth and lipolysis in middle aged women. ALGAE 31, 175-187. https://doi.org/10.4490/algae.2016.31.6.12
  26. Jeon, B. 2017. Effects of GABA enriched fermented sea tangle supplementation on body composition, muscular activity, muscle growth factors, and inspiration functions in adult males. Asian J. Kinesiol. 19, 1-9.
  27. Jang, E. K., Kim, N. Y, Ahn, H. J, and Ji, G. E. 2015. γ-Aminobutyric Acid (GABA) Production and Angiotensin-I Converting Enzyme (ACE) Inhibitory Activity of Fermented Soybean Containing Sea Tangle by the Co-Culture of Lactobacillus brevis with Aspergillus oryzae. J. Microbiol. Biotechnol. 25, 1315-1320. https://doi.org/10.4014/jmb.1412.12038
  28. Tacias-Pascacio, V. G., Morellon-Sterling, R., Siar, E. H., Tavano, O., Berenguer-Murcia, A. and Fernandez-Laf uente, R. 2020. Use of Alcalase in the production of bioac tive peptides: A review. Int. J. Biol. Macromol. 165(Pt B), 2143-2196. https://doi.org/10.1016/j.ijbiomac.2020.10.060
  29. Schiaffino, S. and Mammucari, C. 2011. Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet. Muscle 1, 4. https://doi.org/10.1186/2044-5040-1-4
  30. Yoshiharu, S., Taro, M., Naoya, N., Masaru, N., Robert, A. H. 2004. Exercise Promotes BCAA Catabolism: Effects of BCAA Supplementation on Skeletal Muscle during Exercise. J. Nutr. 134, 1583S-1587S. https://doi.org/10.1093/jn/134.6.1583S
  31. Shimomura, Y., Murakami, T., Nakai, N., Nagasaki, M. and Harris, R. A. 2004. Exercise promotes BCAA catabolism: effects of BCAA supplementation on skeletal muscle during exercise. J. Nutr. 134(6 Suppl), 1583S-1587S. https://doi.org/10.1093/jn/134.6.1583S
  32. Blomstrand E, Eliasson J, Karlsson HK and Kohnke R. 2006. Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J Nutr 136(1 Suppl), 269S-73S. https://doi.org/10.1093/jn/136.1.269S
  33. Nogueira, A. A., Strunz, C. M., Takada, J. Y. and Mansur, A. P. 2019. Biochemical markers of muscle damage and high serum concentration of creatine kinase in patients on statin therapy. Biomark Med. 13, 619-626. https://doi.org/10.2217/bmm-2018-0379