DOI QR코드

DOI QR Code

Differences in fecal and cecal microbiota in C57BL/6J mice fed normal and high fat diet

고지방 식이 조절에 따른 C57BL/6J 마우스의 분변과 맹장에서 나타나는 미생물생태 차이

  • Lee, Sunwoo (Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University) ;
  • Vineet, Singh (Department of Applied Biosciences, Kyungpook National University) ;
  • Unno, Tatsuya (Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University)
  • Received : 2021.09.27
  • Accepted : 2021.10.22
  • Published : 2021.12.31

Abstract

A number of studies have been conducted to prevent obesity due to the worldwide increasing rate of obesity and its adverse effects on our health. Recently, a relationship between obesity and gut microbiome has been reported. Fecal and cecal microbiota are generally targeted for examining the gut microbiome during dietary interventions. There is, however, no common understanding on which microbiota and how results elucidated from the data would differ. In this study, we conducted dietary induced obesity study and compared fecal and cecal microbiota affected by dietary interventions. Normal Diet and high fat diet were fed to 6 weeks old mice for 12 weeks, and 16 S rRNA genes amplified from fecal and cecal DNA were sequenced using MiSeq. Our results show that the 𝛼-diversity showed significant differences between the dietary interventions as well as cecal and fecal microbiota. The difference in the taxonomic compositions between cecal and fecal microbiota had become clearer at the family and genus level. At the genus level, Faecalibaculum and Lactobacillus were more abundant in the cecal and fecal microbiota, respectively. In general dietary intervention studies, dietary effects are more significant than type difference. However, the microbiota analysis results should be interpreted carefully, considering both diet and samples (feces/caecum).

비만은 우리 건강에 악영향을 미치며, 비만율은 전 세계적으로 증가하고 있어 그에 따라 비만을 예방하기 위한 많은 연구들이 진행되고 있다. 최근, 비만과 장내미생물 간의 상관관계가 많이 보고되고 있다. 장내미생물생태를 조사하기 위한 샘플은 분변 또는 맹장을 선택하고 있는데, 샘플 유형(분변 및 맹장)에 따라 미생물생태 결과에 미치는 영향에 대한 일반적인 이해가 없는 실정이다. 본 연구에서 마우스를 고지방 식이 섭취로 비만을 유발하여 식이 조절에 따른 분변 및 맹장의 장내미생물생태를 비교했다. 일반 식단(ND) 및 고지방 식단(HFD)은 6주령 ICR 마우스가 12주 간 섭취하도록 하였으며, 분변 및 맹장 샘플로부터 추출한 DNA에서 16S rRNA 유전자를 증폭하여 MiSeq으로 시퀀싱했다. 𝛼-diversity 결과는 식이 조절과 샘플 종류에 따라 장내미생물생태가 크게 영향을 받는다는 것을 보여준다. 분변과 맹장의 장내미생물생태의 taxonomic composition의 차이는 Family, Genus 수준에서 명확하게 확인되었다. Genus 수준에서 Faecalibaculum과 Lactobacillus는 맹장과 분변 샘플에서 각각 많은 것으로 나타났다. 일반적으로, 식단의 종류는 식이 조절을 적용한 연구 모델에서 샘플의 출처보다 미생물생태 변화에 더 상당한 영향을 미친다. 그러나, 장내미생물생태 분석 결과는 식단과 샘플의 종류(분변/맹장)를 모두 고려하여 신중하게 해석되어야 한다.

Keywords

Acknowledgement

이 논문은 2021학년도 제주대학교 교원성과지원사업에 의하여 연구되었음.

References

  1. Kong C, Gao R, Yan X, Huang L, Qin H (2019) Probiotics improve gut microbiota dysbiosis in obese mice fed a high-fat or high-sucrose diet. Nutrition 60: 175-184. doi: 10.1016/j.nut.2018.10.002
  2. Larsen PE, Dai Y (2015) Metabolome of human gut microbiome is predictive of host dysbiosis. GigaScience 4: doi: 10.1186/s13742-015-0084-3
  3. Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E (2017) Dysbiosis and the immune system. Nat Rev Immunol 17: 219-232. doi: 10.1038/nri.2017.7
  4. Hughes HK, Rose D, Ashwood P (2018) The gut microbiota and dysbiosis in autism spectrum disorders. Curr Neurol Neurosci Rep 18: 81. doi: 10.1007/s11910-018-0887-6
  5. Wang G, Yu Y, Wang YZ, Wang JJ, Guan R, Sun Y, Shi F, Gao J, Fu XL (2019) Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy. J Cell Physiol 234: 17023-17049. doi: 10.1002/jcp.28436
  6. Tilg H, Kaser A (2011) Gut microbiome, obesity, and metabolic dysfunction. The J Clin Investig 121: 2126-2132. doi: 10.1172/JCI58109
  7. Nguyen TLA, Vieira-Silva S, Liston A, Raes J (2015) How informative is the mouse for human gut microbiota research? Dis Model Mech 8: 1-16. doi: 10.1242/dmm.017400
  8. Uzbay T (2019) Germ-free animal experiments in the gut microbiota studies. Curr Opin Pharmacol 49: 6-10. doi: 10.1016/j.coph.2019.03.016
  9. Derakhshani H, Tun HM, Khafipour E (2016) An extended single-index multiplexed 16S rRNA sequencing for microbial community analysis on MiSeq illumina platforms. J Basic Microbiol 56: 321-326. doi: 10.1002/jobm.201500420
  10. Willis C, Desai D, LaRoche J (2019) Influence of 16S rRNA variable region on perceived diversity of marine microbial communities of the Northern North Atlantic. FEMS Microbiol Lett 366: fnz152. doi: 10.1093/femsle/fnz152
  11. Stanley D, Geier MS, Chen H, Hughes RJ, Moore RJ (2015) Comparison of fecal and cecal microbiotas reveals qualitative similarities but quantitative differences. BMC Microbiol 15. doi: 10.1186/s12866-015-0388-6
  12. Panasevich MR, Wankhade UD, Chintapalli SV, Shankar K, Rector RS (2018) Cecal versus fecal microbiota in Ossabaw swine and implications for obesity. Physiol. Genomics 50: 355-368. doi: 10.1152/physiolgenomics.00110.2017
  13. Tremaroli V, Backhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489: 242-249. doi: 10.1038/nature11552
  14. Peeters T, Vantrappen G (1975) The Paneth cell: a source of intestinal lysozyme. Gut 16: 553-558. doi: 10.1136/gut.16.7.553
  15. Shin J, Lee S, Go M-J, Lee SY, Kim SC, Lee C-H, Cho B-K (2016) Analysis of the mouse gut microbiome using full-length 16S rRNA amplicon sequencing. Sci Rep 6: 1-10. doi: 10.1038/srep29681
  16. Kozik AJ, Nakatsu CH, Chun H, Jones-Hall YL (2019) Comparison of the fecal, cecal, and mucus microbiome in male and female mice after TNBS-induced colitis. PLoS One 14: e0225079. doi: 10.1371/journal.pone.0225079
  17. Tanca A, Manghina V, Fraumene C, Palomba A, Abbondio M, Deligios M, Silverman M, Uzzau S (2017) Metaproteogenomics reveals taxonomic and functional changes between cecal and fecal microbiota in mouse. Front Microbiol 8: 391. doi: 10.3389/fmicb.2017.00391
  18. Arora T, Singh S, Sharma RK (2013) Probiotics: interaction with gut microbiome and antiobesity potential. Nutrition 29: 591-596. doi: 10.1016/j.nut.2012.07.017
  19. Singh V, Muthuramalingam K, Kim YM, Park S, Kim SH, Lee J, Hyun C, Unno T, Cho M (2021) Synbiotic supplementation with prebiotic Schizophyllum commune derived β-(1,3/1,6)-glucan and probiotic concoction benefits gut microbiota and its associated metabolic activities. Appl Biol Chem 64: 1-10. doi: 10.1186/s13765-020-00572-4
  20. Jeon D, Singh V, Unno T (2021) In vitro investigation of food effects on human gut microbiota. J Appl Biol Chem 64: 75-81. doi: 10.3839/jabc.2021.012
  21. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75: 7537-7541. doi: 10.1128/AEM.01541-09
  22. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41: D590-D596. doi: 10.1093/nar/gks1219
  23. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73: 5261-5267. doi: 10.1128/AEM.00062-07
  24. Halfvarson J, Brislawn CJ, Lamendella R, Vazquez-Baeza Y, Walters WA, Bramer LM, D'amato M, Bonfiglio F, McDonald D, Gonzalez A, McClure E, Dunklebarger M, Knight R, Jansson J (2017) Dynamics of the human gut microbiome in inflammatory bowel disease. Nat Microbiol 2: 17004. doi: 10.1038/nmicrobiol.2017.4.
  25. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505: 559-563. doi: 10.1038/nature12820
  26. McKenzie C, Tan J, Macia L, Mackay CR (2017) The nutrition-gut microbiome-physiology axis and allergic diseases. Immunol Rev 278: 277-295. doi: 10.1111/imr.12556
  27. Kim K-A, Gu W, Lee I-A, Joh E-H, Kim D-H (2012) High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway PLoS One 7(10): e47713. doi: 10.1371/journal.pone.0047713
  28. Neyrinck AM, Possemiers S, Verstraete W, De Backer F, Cani PD, Delzenne NM (2012) Dietary modulation of clostridial cluster XIVa gut bacteria (Roseburia spp.) by chitin-glucan fiber improves host metabolic alterations induced by high-fat diet in mice. J Nutr Biochem 23: 51-59. doi: 10.1016/j.jnutbio.2010.10.008
  29. Visconti A, Le Roy CI, Rosa F, Rossi N, Martin TC, Mohney RP, Li W, de Rinaldis E, Bell JT, Venter JC (2019) Interplay between the human gut microbiome and host metabolism. Nat Commun 10: 1-10. doi: 10.1038/s41467-019-12476-z
  30. Rahim MBHA, Chilloux J, Martinez-Gili L, Neves AL, Myridakis A, Gooderham N, Dumas M-E (2019) Diet-induced metabolic changes of the human gut microbiome: importance of short-chain fatty acids, methylamines and indoles. Acta Diabetol 56: 493-500. doi: 10.1007/s00592-019-01312-x