References
- Abrahamson, N.A. (2000), "State of the practice of seismic hazard evaluation", ISRM International Symposium, Melbourne, Australia, November.
- Ambraseys, N.N., Smit, P., Douglas, J., Margaris, B., Sigbjornsson, R., Olafsson, S., Suhadolc, P. and Costa, G. (2004), "Internet site for European strong-motion data", Bollettino di Geofisica Teoretica ed Applicata, 45(3), 113-129.
- Aoi, Sh., Kunugi, T. and Fujiwara, H. (2004), "Strong-motion seismograph network operated by NIED: K-NET and KiK-net", J. JPN Assoc. Earthq. Eng., 4(3), 65-74. https://doi.org/10.5610/jaee.4.3_65.
- Arias, A. (1970), "A measure of earthquake intensity", Massachusetts Inst. of Tech., Cambridge Univ. of Chile, Santiago de Chile.
- Bolt, B.A. (1969), "Duration of strong motion", Proceedings of 4th World Conference on Earthquake Engineering, Santiago, Chile, January.
- Bommer, J.J. and Acevedo, A.B. (2004), "The use of real earthquake accelerograms as input to dynamic analysis", J Earthq. Eng., 8(1), 41-91. https://doi.org/10.1080/13632460409350521.
- Boore, D.M. (2005), "On pads and filters: Processing strong-motion data", Bull. Seismol. Soc. Am., 95(2), 745-750. http://doi.org/10.1785/0120040160.
- Boore, D.M. and Bommer, J.J. (2005), "Processing of strong-motion accelerograms: Needs, options and consequences", Soil Dyn. Earthq. Eng., 25, 93-115. https://doi.org/10.1016/j.soildyn.2004.10.007.
- Bradley, B.A. (2015), "Correlation of Arias intensity with amplitude, duration and cumulative intensity measures", Soil Dyn. Earthq. Eng., 78, 89-98. https://doi.org/10.1016/j.soildyn.2015.07.009.
- Burkacki, D. and Jankowski, R. (2019), "Experimental study on models of cylindrical steel tanks under mining tremors and moderate earthquakes", Earthq. Struct., 17(2), 175-189. https://doi.org/10.12989/eas.2019.17.2.175.
- Burkacki, D., Wojcik, M. and Jankowski, R. (2020), ,,Numerical investigation on behaviour of cylindrical steel tanks during mining tremors and moderate earthquakes", Earthq. Struct., 18(1), 97-111. https://doi.org/10.12989/eas.2020.18.1.097.
- Chiou, B., Darragh, R.B., Gregor, N. and Silva, W. (2008), "NGA project strong-motion database", Earthq. Spectra, 24(1), 23-44. https://doi.org/10.1193/1.2894831.
- Chousianitis, K., Del Gaudio, V., Kalogeras, I. and Ganas, A. (2014), "Predictive model of Arias intensity and Newmark displacement forregional scale evaluation of earthquake-induced landslide hazardin Greece", Soil Dyn. Earthq. Eng., 65, 11-29. https://doi.org/10.1016/j.soildyn.2014.05.009.
- Czerwionka, L. and Tatara, T. (2007), "Standard response spectra from chosen mining regions at Upper Silesian Coalfield", Czasopismo Techniczne, 2-B/2007, 11-18. (in Polish)
- Day, R.T. (2002), Geotechnical Earthquake Engineering Handbook, McGraw-Hill.
- ESD (2015), European Strong-Motion Database, http://www.isesd.hi.is
- Eurocode 8 (2004), Design of Structures for Earthquake Resistance, Part 1 and Part 5, European Committee for Standardization, Brussels, Belgium.
- Falborski, T. and Jankowski, R. (2017), "Experimental study on effectiveness of a prototype seismic isolation system made of polymeric bearings", Appl. Sci., 7(8), 808. https://doi.org/10.3390/app7080808.
- Falborski, T. and Jankowski, R. (2018), "Advanced hysteretic model of a prototype seismic isolation system made of polymeric bearings", Appl. Sci., 8(3), 400. https://doi.org/10.3390/app8030400.
- Garini, E., Gazetas, G. and Anastasopoulos, I. (2011), "'Asymmetric Newmark' sliding caused by motions containing severe 'directivity' and 'fling' pulses", Geotechnique, 61(9), 733-756. https://doi.org/10.1680/geot.9.P.070.
- Gazetas, G. and Dakoulas, P. (1992), "Seismic analysis and design of rockfill dams: State-of-the-art", Soil Dyn. Earthq. Eng., 11, 27-61. https://doi.org/10.1016/0267-7261(92)90024-8.
- Grunthal, G. (1999), "Seismic hazard assessment for Central, North and Northwest Europe: GSHP Region 3", Annali Di Geofisica, 42(6), 999-1011. https://doi.org/10.4401/ag-3783.
- GSHAP (2015), Global Seismic Hazard Assessment Program, http://www.seismo.ethz.ch/static/gshap/ceurope/.
- Haselton, C.B. (2009), "Evaluation of ground motion and modification methods: Predicting median interstory drift response of buildings", PEER Ground Motion Selection and Modification Working Group.
- ICOLD (2016), "Selecting seismic parameters for large dams", Guidelines, Bulletin, 148.
- Jayaram, N., Lin, T. and Baker, J.W. (2011), "A computationally efficient ground-motion selection algorithm for matching a target response spectrum mean and variance", Earthq Spectra, 27(3), 797-815. https://doi.org/10.1193/1.3608002.
- Jibson, R.W. (1994), "Predicting earthquake-induced landslide displacements using Newmark's sliding block analysis", Tran. Res. Rec., 1411, 9-17.
- Jibson, R.W. (2007), "Regression models for estimating coseismic landslide displacement", Eng. Geol., 91, 209-218. https://doi.org/10.1016/j.enggeo.2007.01.013.
- Jibson, R.W. (2011), "Methods for assessing the stability of slopes during earthquakes-A retrospective", Eng. Geol., 122, 43-50. https://doi.org/10.1016/j.enggeo.2010.09.017.
- Katsanos, E.I., Sextos, A.G. and Manolis, G.D. (2010), "Selection of earthquake ground motion records: A state-of-the-art review froma structural engineering perspective", Soil Dyn. Earthq. Eng., 30, 157-169. https://doi.org/10.1016/j.soildyn.2009.10.005.
- Kaveh, A. and Mahdavi, V.R. (2017), "Modification of ground motions using wavelet transform and VPS algorithm", Earthq. Struct., 12(4), 389-395. https://doi.org/10.12989/eas.2017.12.4.389.
- Korzec, A. (2016), "Effect of the vertical seismic accelerations on the stability of earth dams", Arch. Hydro-Eng. Environ. Mech., 63(2-3), 101-120. https://doi.org/10.1515/heem-2016-0007.
- Korzec, A. (2021), "Extended Newmark method to assess stability of slope under bidirectional seismic loading", Soil Dyn. Earthq. Eng., 143, 106600. https://doi.org/10.1016/j.soildyn.2021.106600.
- Korzec, A. and Jankowski, R. (2018), "Experimental study of the effect of vertical acceleration component on the slope stability", J. Measure. Eng., 6(4), 240-249. https://doi.org/10.21595/jme.2018.20420.
- Kramer, S.L. (1996), Geotechnical Earthquake Engineering, Prentice-Hall Inc.
- Lanzo, G., Pagliaroli, A. and Scasserra, G. (2015), "Selection of ground motion time histories for the nonlinear analysis of earth dams", Proceedings of the XVI ECSMGE. Geotechnical Engineering for Infrastructure and Development, Edinburgh, Scotland, September.
- Lowrie, W. (2007), Fundamentals of Geophysics, Cambridge University Press.
- Massa, M., Pacor, F., Luzi, L., Bindi, D., Milana, G., Sabetta, F., Gorini, A. and Marcucci, S. (2010), "The Italian ACelerometric Archive (ITACA): Processing of strong-motion data", Bull. Earthq. Eng., 8, 1175-1187. https://doi.org/10.1007/s10518-009-9152-3.
- McGuire, R.K. (2001), "Deterministic vs. probabilistic earthquake hazard and risks", Soil Dyn. Earthq. Eng., 21, 377-384. https://doi.org/10.1016/S0267-7261(01)00019-7.
- Mirek, J. and Lasocki, S. (2001), "SEJS-NET: extensive seismometric measurement system", Proceedings of Natural Hazards in Mining, Wieliczka, Poland, May. (in Polish)
- Neethu, B., Das, D. and Garia, S. (2017), "Effects of ground motion frequency content on performance of isolated bridges with SSI", Earthq. Struct., 13(4), 353-363. https://doi.org/10.12989/eas.2017.13.4.353.
- Newmark, N.M. (1965), "Effects of earthquakes on dams and embankments", Geotechnique, 15(2), 139-160. https://doi.org/10.1680/geot.1965.15.2.139.
- PEER (2015), The Pacific Earthquake Engineering Research Center, https://ngawest2.berkeley.edu/.
- Pejovic, J.R., Serdar, N.N. and Pejovic R.R. (2017), "Optimal intensity measures for probabilistic seismic demand models of RC high-rise buildings", Earthq. Struct., 13(3), 221-230. https://doi.org/10.12989/eas.2017.13.3.221.
- Romeo, R. (2000), "Seismically induced landslide displacements: a predictive model", Eng. Geol., 58, 337-351. https://doi.org/10.1016/S0013-7952(00)00042-9.
- Romeo, R. and Prestininzi, A. (2000), "Probabilistic versus deterministic hazard analysis: an integrated approach for siting problems", Soil Dyn. Earthq. Eng., 20, 75-84. https://doi.org/10.1016/S0267-7261(00)00039-7.
- Sarma, S.K. and Kourkoulis, R. (2004), "Investigation into the prediction of sliding block displacements in seismic analysis of earth dams", Proceedings of 13th World Conference of Earthquake Engineering, Vancouver, Canada, August.
- Sawicki, A. and Chybicki, W. (2005), "Horizontal motion of a rigid block resting on accelerating subsoil", Arch. Hydro-Eng. Environ. Mech., 52(2), 147-160.
- Sica, S., Santucci de Magistris, F. and Vinale, F. (2002), "Seismic behavior of geotechnical structures", Ann. Geophys., 45(6), 799-815. https://doi.org/10.4401/ag-3539.
- Srbulov, M. (2008), Geotechnical Earthquake Engineering. Simplified Analyses with Case Studies and Examples, Springer.
- Travasarou, T. (2003), "Optimal ground motion intensity measures for probabilistic assessment of seismic slope displacements", Ph.D. Dissertation, Civil and Environmental Engineering, University of California, Berkeley.
- Trifunac, M.D. and Brady, A.G. (1975), "A study on the duration of strong earthquake ground motion", Bull. Seismol. Soc. Am., 65(3), 581-626. https://doi.org/10.1785/BSSA0650030581.
- Trifunac, M.D. (1971), "Zero baseline correction of strong-motion accelerograms", Bull. Seismol. Soc. Am., 61(5), 1201-1211. https://doi.org/10.1785/BSSA0610051201.
- Tsinidis, G., Di Sarno, L., Anastasios Sextos, A. and Furtner, P. (2020), "Optimal intensity measures for the structural assessment of buried steel natural gas pipelines due to seismically-induced axial compression at geotechnical discontinuities", Soil Dyn. Earthq. Eng., 131, 106030. https://doi.org/10.1016/j.soildyn.2019.106030.
- Yang, J., Li, J.B. and Lin, G. (2006), "A simple approach to integration of acceleration data for dynamic soil-structure interaction analysis", Soil Dyn. Earthq. Eng., 26, 725-734. https://doi.org/10.1016/j.soildyn.2005.12.011.
- Zembaty, Z. (2004), "Rockburst induced ground motion-A comparative study", Soil Dyn. Earthq. Eng., 24, 11-23. https://doi.org/10.1016/j.soildyn.2003.10.001.