DOI QR코드

DOI QR Code

Drug adsorption and anti-microbial activity of functionalized multiwalled carbon nanotubes

  • Saxena, Megha (Department of Chemistry, Kirori Mal College, University of Delhi) ;
  • Mittal, Disha (Nanobiotech Lab, Department of Zoology, Kirori Mal College, University of Delhi) ;
  • Boudh, Richa (Department of Chemistry, Kirori Mal College, University of Delhi) ;
  • Kumar, Kapinder (Nanobiotech Lab, Department of Zoology, Kirori Mal College, University of Delhi) ;
  • Verma, Anita K. (Nanobiotech Lab, Department of Zoology, Kirori Mal College, University of Delhi) ;
  • Saxena, Reena (Department of Chemistry, Kirori Mal College, University of Delhi)
  • Received : 2020.11.23
  • Accepted : 2021.10.31
  • Published : 2021.12.25

Abstract

Multiwalled carbon nanotubes (MWCNTs) were first oxidized (O-CNTs) to introduce carboxylic group and then further functionalized (F-CNTs) with m-phenylenediamine, which was confirmed by FTIR and SEM. It was used as an effective adsorbent for the adsorptive removal of diclofenac drug from water. Under optimum conditions of pH 6, stirring speed 600 rpm, the maximum adsorption capacity obtained was 532 mg g-1 which is superior to the values reported in literature. The adsorption was quite rapid as 25 mg L-1 drug solution was adsorbed in only 3 minutes of contact time with 10 mg of adsorbent dose. The adsorption kinetics and isotherms were studied using various models to evaluate the adsorption process. The results showed that the data best fit in kinetics pseudo-second order and Langmuir isotherm model. Furthermore, the oxidized and functionalized MWCNTs were applied on gram-negative Escherichia coli and gram-positive Staphylococcus aureus using agar disc diffusion assay to validate their anti-microbial activity. Results were unique as both oxidized and functionalized MWCNTs were equally active against both E. coli and S. aureus. The newly synthesized F-CNTs have great potential in water treatment, with their dual action of removing drug and pathogens from water, makes it potential applicant to save environment.

Keywords

Acknowledgement

The authors are thankful to University of Delhi Innovation Project KMC 302 and Science and Engineering Research Board (SR/S1/IC-64/2012), Delhi, India for the financial support. The authors would also like to thank University Science Instrumentation Centre (USIC), University of Delhi, for providing instrumentation facility.

References

  1. Al-Ghouti, M.A. and Da'ana, D.A. (2020), "Guidelines for the use and interpretation of adsorption isotherm models: A review" J. Hazard. Mater., 393, 122383. https://doi.org/10.1016/j.jhazmat.2020.122383.
  2. Atole, D.M. and Rajput, H.H. (2018), "Ultraviolet spectroscopy and its pharmaceutical applications-a brief review", Asian. J. Pharm. Clin. Res., 11(2), 59-66. https://doi.org/10.22159/ajpcr.2018.v11i2.21361.
  3. Ayawei, N., Ebelegi, A.N. and Wankasi, D. (2017), "Modelling and interpretation of adsorption isotherms", J. Chem., 3039817. https://doi.org/10.1155/2017/3039817.
  4. Bajaj, S., Jain, V., Sharma, N., Tiwari, S. and Saxena, R. (2021), "Efficient lead preconcentration using two chemically functionalized carbon nanotubes in hyphenated flow injection-flame atomic absorption spectrometry system", J. Chromatogr. A, 1638, 461888. https://doi.org/10.1016/j.chroma.2021.461888.
  5. Barczak, M., Dobrowolski, R., Borowski, P. and Giannakoudakis, D.A. (2020), "Pyridine-, thiol and amine-functionalized mesoporous silicas for adsorptive removal of pharmaceuticals", Micropor. Mesopor. Mat., 299, 110132. https://doi.org/10.1016/j.micromeso.2020.110132.
  6. Barczak, M. Wierzbicka, M. and Borowski, P. (2018), "Sorption of diclofenac onto functionalized mesoporous silicas: Experimental and theoretical investigations", Micropor. Mesopor. Mater., 264, 254-264. https://doi.org/10.1016/j.micromeso.2018.01.013.
  7. Biemer, J.J. (1973), "Antimicrobial susceptibility testing by the Kirby-Bauer disc diffusion method", Ann. Clin. Lab. Sci., 3, 135.
  8. Chauhan, M., Saini, V.K. and Suthar, S. (2020), "Removal of pharmaceuticals and personal care products (PPCPs) from water by adsorption on aluminium pillared clay", J. Porous. Mat., 27, 383-393. https://doi.org/10.1007/s10934-019-00817-8.
  9. Dasgupta-Schubert, N., Tiwari, D.K., Francis, E.R., Torres, P.M., Villasenor, L.M. and Mora, C.V. (2017), "Plant responses to nano and micro structured carbon allotropes: Water imbibition by maize seeds upon exposure to multiwalled carbon nanotubes and activated carbon", Adv. Nano Res., 5(3), 245-251. http://doi.org/10.12989/anr.2017.5.3.245.
  10. Dizaj, S.M., Mennati, A., Jafari, S., Khezri K. and Adibkia, K. (2015), "Antimicrobial activity of carbon-based nanoparticles", Adv. Pharm. Bull., 5(1), 19-23. https://doi.org/10.5681/apb.2015.003.
  11. Ebrahimi, F. and Mahmoodi, F. (2018), "Vibration analysis of carbon nanotubes with multiple cracks in thermal environment", Adv. Nano Res., 6(1), 57-80. https://doi.org/10.12989/anr.2018.6.1.057.
  12. Ensano, B.M.B., Borea, L., Naddeo, V., Belgiorno, V., de Luna, M.D.G., Balakrishnan, M. and Ballesteros Jr, F.C. (2019), "Applicability of the electro coagulation process in treating real municipal wastewater containing pharmaceutical active compounds", J. Hazard. Mater., 361, 367-373. https://doi.org/10.1016/j.jhazmat.2018.07.093.
  13. Gil, A., Santamaria, L. and Korili, S.A. (2018), "Removal of caffeine and diclofenac from aqueous solution by adsorption on multiwalled carbon nanotubes", Colloid Interf. Sci. Commun., 22, 25-28. https://doi.org/10.1016/j.colcom.2017.11.007.
  14. Hu, D., Jiang, R., Wang, N., Xu, H., Wang, Y.G. and Ouyang, X.K. (2019), "Adsorption of diclofenac sodium on bilayer amino-functionalized cellulose nanocrystals/chitosan composite", J. Hazard. Mater., 369, 483-493. https://doi.org/10.1016/j.jhazmat.2019.02.057.
  15. Hu, X., Cheng, Z., Sun, Z. and Zhu, H. (2017), "Adsorption of diclofenac and triclosan in aqueous solution by purified multi-walled carbon nanotubes", Pol. J. Environ. Stud., 26(1). https://doi.org/10.15244/pjoes/63885.
  16. Ighalo, J.O. and Adeniyi, A.G. (2020), "Mitigation of Diclofenac pollution in aqueous media by adsorption", Chem. Bio. Eng. Rev.,7(2), 50-64. https://doi.org/10.1002/cben.201900020.
  17. Kanakaraju, D., Glass, B.D. and Oelgemoller, M. (2018), "Advanced oxidation process-mediated removal of pharmaceuticals from water: A review", J. Environ. Manage., 219, 189-207. https://doi.org/10.1016/j.jenvman.2018.04.103.
  18. Kang, S., Pinault, M., Pfefferle, L.D. and Elimelech, M. (2007), "Single-walled carbon nanotubes exhibit strong antimicrobial activity", Langmuir, 23(17), 8670-8673. https://doi.org/10.1021/la701067r.
  19. Khan, S.A., Siddiqui, M.F. and Khan, T.A. (2020), "Synthesis of poly (methacrylic acid)/montmorillonite hydrogel nanocomposite for efficient adsorption of amoxicillin and diclofenac from aqueous Environment: kinetic, isotherm, reusability, and thermodynamic investigations", ACS Omega, 5(6), 2843-2855. https://doi.org/10.1021/acsomega.9b03617.
  20. Leone, V.O., Pereira, M.C., Aquino, S.F., Oliveira, L.C.A., Correa, S., Ramalho, T.C., Gurgel L.V.A. and Silva, A.C. (2018), "Adsorption of diclofenac on a magnetic adsorbent based on maghemite: Experimental and theoretical studies", New J. Chem., 42(1), 437-449. https://doi.org/10.1039/C7NJ03214E.
  21. Liang, X.X., Omer, A.M., Hu, Z.H., Wang, Y.G., Yu, D. and Ouyang, X.K. (2019), "Efficient adsorption of diclofenac sodium from aqueous solutions using magnetic amine-functionalized chitosan", Chemosphere, 217, 270-278. https://doi.org/10.1016/j.chemosphere.2018.11.023.
  22. Liu, T., Xie, Z., Zhang, Y., Fan, J. and Liu, Q. (2017), "Preparation of cationic polymeric nanoparticles as an effective adsorbent for removing diclofenac sodium from water", Rsc Adv., 7(61), 38279-38286. https://doi.org/10.1039/C7RA06730E.
  23. Lonappan, L., Brar, S.K., Das, R.K., Verma, M. and Surampalli, R.Y. (2016), "Diclofenac and its transformation products: Environmental occurrence and toxicity-a review", Environ. Int., 96, 127-138. https://doi.org/10.1016/j.envint.2016.09.014.
  24. Mansour, F., Al-Hindi, M., Yahfoufi, R., Ayoub, G.M. and Ahmad, M.N. (2018), "The use of activated carbon for the removal of pharmaceuticals from aqueous solutions: A review", Rev. Environ. Sci. Biotechnol., 17, 109-145. https://doi.org/10.1007/s11157-0179456-8.
  25. Mestre, A.S. and Carvalho, A.P. (2019), "Photocatalytic degradation of pharmaceuticals carbamazepine, diclofenac, and sulfamethoxazole by semiconductor and carbon materials: A review", Molecules, 24(20), 3702. https://doi.org/10.3390/molecules24203702.
  26. Mohanty, B., Verma, A.K., Claessonand P. and Bohidar, H.B. (2007), "Physical and anti-microbial characteristics of carbon nanoparticles prepared from lamp soot", Nanotechnology, 18(44), 445102. https://doi.org/10.1088/0957-4484/18/44/445102.
  27. Mousavi, S.A. and Janjani, H. (2018), "Antibiotics adsorption from aqueous solutions using carbon nanotubes: Asystematic review", Toxin Rev., 39(2), 87-98. https://doi.org/10.1080/15569543.2018.1483405.
  28. Ouyang, Z., Huang, Z., Tang, X., Xiong, C., Tang, M. and Lu, Y. (2019), "A dually charged nanofiltration membrane by pH-responsive polydopamine for pharmaceuticals and personal care products removal", Sep. Purif. Technol., 211, 90-97. https://doi.org/10.1016/j.seppur.2018.09.059.
  29. Patel, M., Kumar, R., Kishore, K., Mlsna, T., Pittman Jr, C.U. and Mohan, D. (2019), "Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods", Chem. Rev., 119(6), 3510-3673. https://doi.org/10.1021/acs.chemrev.8b00299.
  30. Pereira, M.B.B., Franca, D.B., Araujo, R.C., Silva Filho, E.C., Rigaud, B., Fonseca, M.G. and Jaber, M. (2020), "Amino hydroxyapatite/chitosan hybrids reticulated with glutaraldehyde at different pH values and their use for diclofenac removal", Carbohydr. Polym., 236, 116036. https://doi.org/10.1016/j.carbpol.2020.116036.
  31. Raicopol, M.D., Andronescu, C., Voicu, S.I., Vasile, E. and Pandele, A.M. (2019), "Cellulose acetate/layered double hydroxide adsorptive membranes for efficient removal of pharmaceutical environmental contaminants", Carbohydr. Polym., 214, 204-212. https://doi.org/10.1016/j.carbpol.2019.03.042.
  32. Rawat, K., Agarwal, S., Tyagi, A., Verma A.K. and Bohidar, H.B. (2014), "Aspect ratio dependent cytotoxicity and antimicrobial properties of nanoclay", Appl. Biochem. Biotechnol., 174(3), 936-44. https://doi.org/10.1007/s12010-014-0983-2.
  33. Saxena, R., Saxena, M. and Lochab, A. (2020), "Recent progress in nanomaterials for adsorptive removal of organic contaminants from wastewater", Chem. Select, 5(1), 335-353. https://doi.org/10.1002/slct.201903542.
  34. Saxena, M., Sharma, N. and Saxena, R. (2020), "Highly efficient and rapid removal of a toxic dye: adsorption kinetics, isotherm, and mechanism studies on functionalized multiwalled carbon nanotubes", Surf. Interface, 21, 100639. https://doi.org/10.1016/j.surfin.2020.100639.
  35. Siddiqui, M.R., AlOthman, Z.A. and Rahman, N. (2017), "Analytical techniques in pharmaceutical analysis: A review", Arab. J. Chem., 10(1), 1409-1421. https://doi.org/10.1016/j.arabjc.2013.04.016.
  36. Silveira, C., Shimabuku-Biadola, Q.L., Silva, M.F., Vieira, M.F. and Bergamasco, R. (2020), "Development of an activated carbon impregnation process with iron oxide nanoparticles by green synthesis for diclofenac adsorption", Environ. Sci. Pollut. Res., 27(6), 6088-6102. https://doi.org/10.1007/s11356-019-07329-7.
  37. Supraja, N., Avinash, B. and Prasad, T.N.V.K.V. (2017a), "Antimicrobial efficacy and safety analysis of zinc oxide nanoparticles against water borne pathogens", Adv. Nano Res., 5(2), 127-140. https://doi.org/10.12989/anr.2017.5.2.127.
  38. Supraja, N., Avinash, B. and Prasad, T.N.V.K.V. (2017b), "Nelumbo nucifera extracts mediated synthesis of silver nanoparticles for the potential applications in medicine and environmental remediation", Adv. Nano Res., 5(4), 373-392. https://doi.org/10.12989/anr.2017.5.4.373.
  39. Supraja, N., Dhivya, J., Prasad, T.N.V.K.V., and David, E. (2018), "Synthesis, characterization and dose dependent antimicrobial and anticancerous efficacy of phycogenic (Sargassum muticum) silver nanoparticles against Breast Cancer Cells (MCF 7) cell line", Adv. Nano Res., 6(2), 183-200. https://doi.org/10.12989/anr.2018.6.2.183.
  40. Tiwari, S., Sharma, N. and Saxena, R. (2017), "Functionalized carbon nanotubes in online speciation of chromium in real water samples using hyphenated FI-FAAS", New J. Chem., 41(12), 5034-5039. https://doi.org/10.1039/C7NJ01253E.
  41. Turner, B.D., Henley, B.J., Sleap, S.B. and Sloan, S.W. (2015), "Kinetic model selection and the Hill model in geochemistry", Int. J. Environ. Sci. Technol., 12(8), 2545-2558. https://doi.org/10.1007/s13762-014-0662-4.
  42. Van Tran, T., Nguyen, D.T.C., Le, H.T., Vo, D.V.N., Nanda, S. and Nguyen, T.D. (2020), "Optimization, equilibrium, adsorption behavior and role of surface functional groups on graphene oxide-based nanocomposite towards diclofenac drug", J. Environ. Sci., 93, 137-150. https://doi.org/10.1016/j.jes.2020.02.007.
  43. Verma, A.K., Dey, A., Dasgupta, A., Kumar, V. and Tyagi, A. (2015), "Evaluation of the of antibacterial efficacy of polyvinylpyrrolidone (PVP) and tri-sodium citrate (TSC) silver nanoparticles", Int. Nano Lett., 5(4), 223-230. https://doi.org/10.1007/s40089-015-0159-2.
  44. Wamba, A.G., Ndi, S.K., Lima, E.C., Kayem, J.G., Thue, P.S., Costa, T.M., Quevedo, A.B. Benvenutti, E.V. and Machado, F.M. (2019), "Preparation, characterization of titanate Nanosheet-pozzolan nanocomposite and its use as an adsorbent for removal of diclofenac from simulated hospital effluents", J. Taiwan Inst. Chem. Eng., 102, 321-329. https://doi.org/10.1016/j.jtice.2019.05.001.
  45. Wan, K., Huang, L., Yan, J., Ma, B., Huang, X., Luo, Z., Zhang, H. and Xiao, T. (2021), "Removal of fluoride from industrial wastewater by using different adsorbents: A review", Sci. Total Environ., 773, 145535. https://doi.org/10.1016/j.scitotenv.2021.145535.
  46. Wang, J. and Guo, X. (2020), "Adsorption kinetic models: Physical meanings, applications, and solving methods", J. Hazard. Mater., 390, 122156. https://doi.org/10.1016/j.jhazmat.2020.122156.
  47. Xiong, T., Yuan, X., Wang, H., Wu, Z., Jiang, L., Leng, L., Xi, K., Cao, X. and Zeng, G. (2019), "Highly efficient removal of diclofenac sodium from medical wastewater by Mg/Al layered double hydroxide-poly (m-phenylenediamine) composite", Chem. Eng. J., 366, 83-91. https://doi.org/10.1016/j.cej.2019.02.069.