DOI QR코드

DOI QR Code

Smart Farm Control System for Improving Energy Efficiency

에너지 효율 향상을 위한 스마트팜 제어 시스템

  • Choi, Minseok (Division of AI Informatics, Sahmyook University)
  • 최민석 (삼육대학교 지능정보융합학부)
  • Received : 2021.10.08
  • Accepted : 2021.12.20
  • Published : 2021.12.28

Abstract

The adaptation of smartfarm technology that converges ICT is increasing productivity and competitiveness in the agriculture. Technologies have been developed that enable environmental monitoring through various sensors and automatic control of the cultivation environment, and researches are underway to advance smartfarm technology using data generated from smartfarms. In this paper, an environmental control method to reduce the energy consumption of a smartfarm by using the environment and control data of the smartfarm is proposed. It was confirmed that energy consumption could be reduced compared to an independent environmental control method by creating an environmental prediction model using accumulated environmental data and selecting a control method to minimize energy consumption in a given situation by considering multiple environmental factors. In the future, research is needed to obtain higher energy efficiency through the advancement of the predictive model and the improvement of the complex control algorithms.

정보통신기술과 융합된 스마트팜의 도입은 농업 분야의 생산성을 높이고 경쟁력을 강화하고 있다. 각종 센서를 통한 환경 모니터링과 이를 통한 재배 환경의 자동제어가 가능하며 원격제어를 지원하는 기술들이 개발되어 보급되었고, 스마트팜에서 생성된 데이터를 이용하여 스마트팜 기술의 고도화를 위한 연구들이 진행되고 있다. 본 논문에서는 스마트팜의 환경 및 제어 데이터를 이용하여 스마트팜의 에너지 소비를 줄이기 위한 환경 제어 방법을 제안한다. 누적된 환경 데이터를 이용하여 환경 예측 모델을 만들고, 다중 환경 요소를 고려하여 주어진 상황에서 에너지 소비를 최소화할 수 있는 제어 방식을 선택함으로써 독립적 환경 제어 방식과 비교해 에너지 사용량을 줄일 수 있음을 확인하였다. 향후 예측 모델의 고도화와 복합제어 알고리즘의 개선 통하여 더 높은 에너지 효율을 얻기 위한 연구가 필요할 것으로 보인다.

Keywords

References

  1. H. S. Kim, D. D. Lee & H. S. Kim. (2014). Strategies and Tasks of ICT Convergence for the Creative Agriculture Realization(R736), Seoul: Korea Rural Economic Institute.
  2. Y. Lee, C. M. Heo. (2019). A Study on the Influence of Acceptance Factors of ICT Convergence Technology on the Intention of Acceptance in Agriculture : Focusing on the Moderating Effect of Innovation Resistance. Journal of Digital Convergence, 17(9), 115-126. DOI : 10.14400/JDC.2019.17.9.115
  3. M. H. Ahn, C. M Heo. (2019). The Effect of Technical Characteristics of Smart Farm on Acceptance Intention by Mediating Effect of Effort Expectation. Journal of Digital Convergence, 17(6), 145-157. DOI : 10.14400/JDC.2019.17.6.145
  4. N. G. Yoon, J. S. Lee, G. S. Park & J. Y. Lee. (2017. May). Korea smart farm policy and technology development status. Rural Resources, 59(2), 19-27.
  5. M. Choi. (2020). A study on the efficient Implementation method of cloud-based smart farm control system. Journal of Digital Convergence, 18(3), 171-177. DOI: 10.14400/JDC.2020.18.3.171
  6. H. Choi, H. Ahn, Y. Jeong and B. Lee. (2019). A Smart Fram Environment Optimization and Yield Prediction Platform based on IoT and Deep Learning. Journal of Korea Institute of Information, Electronics, and Communication Technology, 12(6), 672-680. DOI : 10.17661/jkiiect.2019.12.6.672
  7. J. E. Lee, S. R. Kang, Y. Ok, M. Chun and M. H. Na. (2019). A Study on the Optimal Environmental Factors Affecting the Growth of Facility Cucumbers. Journal of the Korean Data Analysis Society, 21(6), 2913-2920. DOI : 10.37727/jkdas.2019.21.6.2913
  8. J. C. Kim, S. Kwon, I. D. Ha and N. H. Na. (2021). Survival analysis for tomato big data in smart farming. Journal of the Korean Data & Information Science Society, 32(2), 361-374. DOI : 10.7465/jkdi.2021.32.2.361
  9. K. W. Lee, J. O. Jeon, K. J. Lee, Y. H. Kim, C. J. Lee, and M. J. Jang. (2019). Analysis of growth environment of Flammulina velutipes using the smart farm cultivation technology. Journal of mushrooms, 17(4), 197-204. DOI : 10.14480/JM.2019.17.4.197
  10. H. K. Kim, J. G. Jeon, L. Baek, H. Y. Pyo, J. Y. Jeong & Y. C. Kim. (2015). Analysis of Temperature Changes in greenhouses with Recirculated Water Curtain System. Protected Horticulture and Plant Factory, 24(2), 93-99. DOI : 10.12791/KSBEC.2015.24.2.093
  11. J. Y. Yoon, B. H. Lee. (2017). Implementation strategy and development methods for smart farms in Gangwon Province. Journal of Agricultural, Life and Environmental Sciences, 29(2), 137-151. DOI : 10.12972/jales.20170013
  12. S. J. Oh. (2017). A Design of intelligent information system for greenhouse cultivation. Journal of Digital Convergence, 15(2), 183-190. DOI : 10.14400/JDC.2017.15.2.183
  13. Smart Farm Korea. (2019). Structure of smart greenhouse. EPIS(online). https://www.smartfarmkorea.net/contents/view.do?menuId=M01010103
  14. H. Y. Shin, H. K. Yim & W. T. Kim. (2018). Intelligent Green House Control System based on Deep Learning for Saving Electric Power Consumption. Journal of IKEEE, 22(1), 53-60. DOI : 10.7471/ikeee.2018.22.1.53
  15. Z. Yao, Z. Xu & S. Du. (2013, June). Optimal control based on temperature dynamic model of greenhouse crop germination period. Fourth International Conference on Intelligent Control and Information Processing(ICICIP). (pp. 267-270). Beijing : IEEE