DOI QR코드

DOI QR Code

Development of Neuropsychological Model for Spatial Ability and Application to Light & Shadow Problem Solving Process

공간능력에 대한 신경과학적 모델 개발 및 빛과 그림자 문제 해결 과정에의 적용

  • Received : 2021.08.04
  • Accepted : 2021.11.02
  • Published : 2021.10.31

Abstract

The purpose of this study is to develop a neuropsychological model for the spatial ability factor and to divide the brain active area involved in the light & shadow problem solving process into the domain-general ability and the domain-specific ability based on the neuropsychological model. Twenty-four male college students participated in the study to measure the synchronized eye movement and electroencephalograms (EEG) while they performed the spatial ability test and the light & shadow tasks. Neuropsychological model for the spatial ability factor and light & shadow problem solving process was developed by integrating the measurements of the participants' eye movements, brain activity areas, and the interview findings regarding their thoughts and strategies. The results of this study are as follows; first, the spatial visualization and mental rotation factors mainly required activation of the parietal lobe, and the spatial orientation factor required activation of the frontal lobe. Second, in the light & shadow problem solving process, participants use both their spatial ability as a domain-general thought, and the application of scientific principles as a domain-specific thought. The brain activity patterns resulting from a participants' inferring the shadow by parallel light source and inferring the shadow when the direction of the light changed were similar to the neuropsychological model for the spatial visualization factor. The brain activity pattern from inferring an object from its shadow by light from multiple directions was similar to the neuropsychological model for the spatial orientation factor. The brain activity pattern from inferring a shadow with a point source of light was similar to the neuropsychological model for the spatial visualization factor. In addition, when solving the light & shadow tasks, the brain's middle temporal gyrus, precentral gyrus, inferior frontal gyrus, middle frontal gyrus were additionally activated, which are responsible for deductive reasoning, working memory, and planning for action.

이 연구의 목적은 공간능력 구성요소에 대한 신경과학적 모델을 개발하고, 빛과 그림자 관련 과학 과제를 해결하는 과정에서의 두뇌 활성 영역을 신경과학적 모델에 기반하여 영역 일반적 능력과 영역특수적 능력으로 구분하여 설명하는 것이다. 이를 위해 남자 대학생 24명이 공간능력 검사지 문항과 빛과 그림자 과제를 해결하는 동안의 시선이동과 EEG를 동기화하여 측정하였으며, 과제 해결 전략에 대한 사후면담과 RVP를 실시하였다. 시선 이동, 두뇌 활성 영역, 참여자의 사고 과정과 전략을 통합하여 공간능력 구성요소에 대한 신경과학적 모델을 개발하고, 빛과 그림자 관련 과제 해결 과정을 분석하였다. 연구의 결과는 다음과 같다. 첫째, 공간 시각화와 심적 회전 요소는 주로 두정엽의 활성을 필요로 했으며, 공간 방향화 요소는 전두엽의 활성을 필요로 했다. 구체적으로, 공간 시각화 요소는 문제를 탐색하는 과정에서 전두엽이 활성화되었고, 문제와 답지를 비교하는 과정에서 측두엽과 두정엽이 활성화되었다. 심적 회전 요소는 회전된 정보를 탐색하는 구간에서는 전두엽이, 심적 회전을 할 때에는 두정엽이, 문제와 답지를 비교하는 구간에서는 측두엽이 활성화되었다. 공간 방향화 요소는 문제를 탐색하는 과정과 문제와 답지를 비교하는 과정 모두 전두엽이 활성화되었다. 둘째, 빛과 그림자 과제를 해결 할 때에는 영역 일반적 기능인 공간 능력과 과학적 원리를 적용하는 영역 특수적 사고가 함께 필요하였다. 평행광의 그림자 모양 추론과 빛의 방향이 바뀔 때의 그림자 모양을 추론에서의 두뇌 활성 패턴은 공간 시각화 요소에 대한 신경과학적 모델과 유사하였다. 여러 방향에서의 그림자를 통해 원래 물체를 추론할 때에는 공간 방향화 요소, 점광원의 그림자 모양을 추론할 때에는 공간 시각화 요소에 대한 신경과학적 모델과 두뇌 활성 패턴이 유사하였다. 빛과 그림자 과제를 해결할 때 추가적으로 활성화 된 부위는 주로 연역적 추론, 작업 기억, 행동에 대한 계획 기능을 담당하는 중측두이랑, 중심앞이랑, 하전두이랑, 중전두이랑이었다. 따라서 빛과 그림자 과제를 해결하는 과정에서는 공간능력 외에도 그림자 생성 원리를 기반으로 한 연역적 추론, 빛의 진행 방향을 작업 기억에 유지시키는 것, 광원의 특징에 따른 과제 해결 과정 계획, 빛-물체-스크린의 공간적 관계 인지 등이 추가적으로 필요하다.

Keywords

References

  1. Allen, G. L., Cowan, C. R. M., & Power, H. (2006). Acquiring information from simple weather maps: Influences of domain-specific knowledge and general visual-spatial abilities. Learning and Individual Differences, 16(4), 337-349. https://doi.org/10.1016/j.lindif.2007.01.003
  2. Amorapanth, P. X., Widick, P., & Chatterjee, A. (2010). The neural basis for spatial relations. Journal of Cognitive Neuroscience, 22(8), 1739-1753. https://doi.org/10.1162/jocn.2009.21322
  3. Andersen, R. A. (2011). Inferior parietal lobule function in spatial perception and visuomotor integration. Comprehensive Physiology.
  4. Asan, O., & Yang, Y. (2015). Using eye trackers for usability evaluation of health information technology: A systematic literature review. JMIR Human Factors, 2(1).
  5. Axmacher, N., Schmitz, D. P., Wagner, T., Elger, C. E., & Fell, J. (2008). Interactions between medial temporal lobe, prefrontal cortex, and inferior temporal regions during visual working memory: a combined intracranial EEG and functional magnetic resonance imaging study. Journal of Neuroscience, 28(29), 7304-7312. https://doi.org/10.1523/JNEUROSCI.1778-08.2008
  6. Baccino, T. (2011). Eye movements and concurrent ERP's: EFRPs investigations in reading. Handbook on eye movements. Oxford: Oxford University Press.
  7. Black, A. A. (2005). Spatial ability and earth science conceptual understanding. Journal of Geoscience Education, 53(4), 402-414. https://doi.org/10.5408/1089-9995-53.4.402
  8. Booth, J. R., MacWhinney, B., Thulborn, K. R., Sacco, K., Voyvodic, J. T., & Feldman, H. M. (2000). Developmental and lesion effects in brain activation during sentence comprehension and mental rotation. Developmental Neuropsychology, 18(2), 139-169. https://doi.org/10.1207/S15326942DN1802_1
  9. Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12(1), 1-47. https://doi.org/10.1162/08989290051137585
  10. Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. Cambridge University Press.
  11. Cohen, C. A., & Hegarty, M. (2007). Individual differences in use of an external visualization while performing an internal visualization task. Applied Cognitive Psychology, 21, 701-711. https://doi.org/10.1002/acp.1344
  12. Cohen, C. A., & Hegarty, M. (2012). Inferring cross sections of 3D objects: A new spatial thinking test. Learning and Individual Differences, 22(6), 868-874. https://doi.org/10.1016/j.lindif.2012.05.007
  13. Coleman, S. L., & Gotch, A. J. (1998). Spatial perception skills of chemistry students. Journal of Chemical Education, 75, 206-209. https://doi.org/10.1021/ed075p206
  14. College Entrance Examination Board (1939). CEEB special aptitude test in spatial relations. USA.
  15. Coluccia, E., & Louse, G. (2004). Gender differences in spatial orientation: A review. Journal of Environmental Psychology, 24(3), 329-340. https://doi.org/10.1016/j.jenvp.2004.08.006
  16. Courtney, S. M., Petit, L., Maisog, J. M., Ungerleider, L. G., & Haxby, J. V. (1998). An area specialized for spatial working memory in human frontal cortex. Science, 279(5355), 1347-1351. https://doi.org/10.1126/science.279.5355.1347
  17. De Carli, D., Garreffa, G., Colonnese, C., Giulietti, G., Labruna, L., Briselli, E., & Maraviglia, B. (2007). Identification of activated regions during a language task. Magnetic Resonance Imaging, 25(6), 933-938. https://doi.org/10.1016/j.mri.2007.03.031
  18. Devillez, H., Guyader, N., & Guerin-Dugue, A. (2015). An eye fixation-related potentials analysis of the P300 potential for fixations onto a target object when exploring natural scenes. Journal of Vision, 15(13), 20-20. https://doi.org/10.1167/15.13.20
  19. Dimigen, O., Sommer, W., Hohlfeld, A., Jacobs, A. M., & Kliegl, R. (2011). Coregistration of eye movements and EEG in natural reading: analyses and review. Journal of Experimental Psychology: General, 140(4), 552. https://doi.org/10.1037/a0023885
  20. Eshach, H. (2003). Small-group interview-based discussions about diffused shadow. Journal of Science Education and Technology, 12(3), 261-275. https://doi.org/10.1023/A:1025080923027
  21. Fan, J., Hof, P. R., Guise, K. G., Fossella, J. A., & Posner, M. I. (2007). The functional integration of the anterior cingulate cortex during conflict processing. Cerebral Cortex, 18(4), 796-805. https://doi.org/10.1093/cercor/bhm125
  22. Feng, J., Spence, I., & Pratt, J. (2007). Playing an action video game reduces gender differences in spatial cognition. Psychological Science, 18(10), 850-855. https://doi.org/10.1111/j.1467-9280.2007.01990.x
  23. Fincham, J. M., Carter, C. S., Van Veen, V., Stenger, V. A., & Anderson, J. R. (2002). Neural mechanisms of planning: a computational analysis using event-related fMRI. Proceedings of the National Academy of Sciences, 99(5), 3346-3351. https://doi.org/10.1073/pnas.052703399
  24. Galili, L., & Hazan, A. (2000). Learnenrs' knowledge in optics: Interpretation, structure and analysis. International Journal of Science Education, 22(1), 57-88. https://doi.org/10.1080/095006900290000
  25. Ganley, C. M., Vasilyeva, M., & Dulaney, A. (2014). Spatial ability mediates the gender difference in middle school students' science performance. Child Development, 85(4), 1419-1432. https://doi.org/10.1111/cdev.12230
  26. Gazzaniga, M. S., Ivry R. B. & Mangun, G. R. (2008). cognitive neuroscience: the biology of the mind(3rd ed.). Network: W. W. Norton.
  27. Geiser, C., Lehmann, W., & Eid, M. (2006). Separating "rotators" from "nonrotators" in the mental rotations test: A multigroup latent class analysis. Multivariate Behavioral Research, 41(3), 261-293. https://doi.org/10.1207/s15327906mbr4103_2
  28. Gerlach, C., Aaside, C. T., Humphreys, G. W., Gade, A., Paulson, O. B., & Law, I. (2002). Brain activity related to integrative processes in visual object recognition: bottom-up integration and the modulatory influence of stored knowledge. Neuropsychologia, 40(8), 1254-1267. https://doi.org/10.1016/S0028-3932(01)00222-6
  29. Goel, V., & Dolan, R. J. (2004). Differential involvement of left prefrontal cortexin inductive and deductive reasoning. Cognition, 93(3), 109-121.
  30. Goldsmith, L. T., Hetland, L., Hoyle, C., & Winner, E. (2016). Visual-spatial thinking in geometry and the visual arts. Psychology of Aesthetics, Creativity, and the Arts, 10(1), 56-71. https://doi.org/10.1037/aca0000027
  31. Grindrod, C. M., Bilenko, N. Y., Myers, E. B., & Blumstein, S. E. (2008). The role of the left inferior frontal gyrus in implicit semantic competition and selection: an event-related fMRI study. Brain Research, 1229, 167-178. https://doi.org/10.1016/j.brainres.2008.07.017
  32. Guay, R. B. (1976). Purdue spatial visualization test. West Lafayette, IN: Purdue Research Foundation.
  33. Gur, R. C., Alsop, D., Glahn, D., Petty, R., Swanson, C, L., Maldjian, J. A., Turetsky, B. I., Detre, J. A., Gee, J., & Gur, R. E. (2000). An fMRI study of sex differences inregional activation to a verbal and a spatial task, Brain and Language, 74, 157-170. https://doi.org/10.1006/brln.2000.2325
  34. Halari, R., Sharma, T., Hines, M., Andrew, C., Simmons, A., & Kumari, V. (2006). Comparable fMRI activity with differential behavioural performance on mental rotation and overt verbal fluency tasks in healthy men and women. Experimental Brain Research, 169(1), 1-14. https://doi.org/10.1007/s00221-005-0118-7
  35. Hansen, L., & Monk, M. (2002). Brain development, structuring of learning and science education: Where are we now? A review of some recent research. International Journal of Science Education, 24(4), 343-356. https://doi.org/10.1080/09500690110049105
  36. Hegarty, M. (2014). Spatial thinking in undergraduate science education. Spatial Cognition & Computation, 14(2), 142-167. https://doi.org/10.1080/13875868.2014.889696
  37. Hegarty, M., Keehner, M., Khooshabeh, P., & Montello, D. R. (2009). How spatial abilities enhance, and are enhanced by, dental education. Learning and Individual Differences, 19(1), 61-70. https://doi.org/10.1016/j.lindif.2008.04.006
  38. Hegarty, M., & Waller, D. (2004). A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence, 32(2), 175-191. https://doi.org/10.1016/j.intell.2003.12.001
  39. Hoppe, C., Fliessbach, K., Stausberg, S., Stojanovic, J., Trautner, P., Elger, C. E., & Weber, B. (2012). A key role for experimental task performance: effects of math talent, gender and performance on the neural correlates of mental rotation. Brain and Cognition, 78(1), 14-27. https://doi.org/10.1016/j.bandc.2011.10.008
  40. Hsu, C. Y., Tsai, C. C., & Liang, J. C. (2011). Facilitating preschoolers' scientific knowledge construction via computer games regarding light and shadow: The effect of the prediction-observation- explanation (POE) strategy. Journal of Science Education and Technology, 20(5), 482-493. https://doi.org/10.1007/s10956-011-9298-z
  41. Hutzler, F., Braun, M., Vo, M. L. H., Engl, V., Hofmann, M., Dambacher, M., & Jacobs, A. M. (2007). Welcome to the real world: validating fixation-related brain potentials for ecologically valid settings. Brain Research, 1172, 124-129. https://doi.org/10.1016/j.brainres.2007.07.025
  42. Jin, S. H., Kwon, Y. J., Jeong, J. S., Kwon, S. W., & Shin, D. H. (2006). Differences in brain information transmission between gifted and normal children during scientific hypothesis generation. Brain and Cognition, 62(3), 191-197. https://doi.org/10.1016/j.bandc.2006.05.001
  43. Kamienkowski, J. E., Ison, M. J.., Quiroga, R. Q., & Sigman, M. (2012). Fixation- related potentials in visual search: A combined EEG and eye tracking study. Journal of Vision, 12(7), 1-20. https://doi.org/10.1167/12.7.1
  44. Kastens, K. A., & Ishikawa, T. (2006). Spatial thinking in the geosciences and cognitive sciences: A cross-disciplinary look at the intersection of the two fields. Geological Society of America Special Papers, 413, 53-76.
  45. Keele, S. W., Ivry, R., Mayr, U., Hazeltine, E., & Heuer, H. (2003). The cognitive and neural architecture of sequence representation. Psychological Review, 110(2), 316. https://doi.org/10.1037/0033-295X.110.2.316
  46. Kellenbach, M. L., Hovius, M., & Patterson, K. (2005). A pet study of visual and semantic knowledge about objects. Cortex, 41(2), 121-132. https://doi.org/10.1016/S0010-9452(08)70887-6
  47. Koenigs, M., Barbey, A. K., Postle, B. R., & Grafman, J. (2009). Superior parietal cortex is critical for the manipulation of information in working memory. Journal of Neuroscience, 29(47), 14980-14986. https://doi.org/10.1523/JNEUROSCI.3706-09.2009
  48. Koshino, H., Carpenter, P. A., Keller, T. A., & Just, M. A. (2005). Interactions between the dorsal and the ventral pathways in mental rotation: an fMRI study. Cognitive, Affective, & Behavioral Neuroscience, 5(1), 54-66. https://doi.org/10.3758/CABN.5.1.54
  49. Kosslyn, S. M., Thompson, W. L., Klm, I. J., & Alpert, N. M. (1995). Topographical representations of mental images in primary visual cortex. Nature, 378(6556), 496-498. https://doi.org/10.1038/378496a0
  50. Kozhevnikov, M., Motes, M. A., & Hegarty, M. (2007). Spatial visualization in physics problem solving. Cognitive Science, 31(4), 549-579. https://doi.org/10.1080/15326900701399897
  51. Kozhevnikov, M., & Thornton, R. (2006). Real-time data display, spatial visualization ability and learning force and motion concepts. Journal of Science Education and Technology, 15, 111-132. https://doi.org/10.1007/s10956-006-0361-0
  52. Leopold, C., Gorska, R. A., & Sorby, S. A. (2001). International experiences in developing the spatial visualization abilities of engineering students. Journal for Geometry and Graphics, 5(1), 81-91.
  53. Liben, L. S., & Titus, S. J. (2012). The importance of spatial thinking for geoscience education: Insights from the crossroads of geoscience and cognitive science. Geological Society of America Special Papers, 486, 51-70.
  54. Linn, M., & Petersen, A. C. (1985). Emergence andcharacterization of sex differences in spatial ability: A meta-analysis. Child Development, 56, 1479-1498. https://doi.org/10.1111/j.1467-8624.1985.tb00213.x
  55. Lohman, D. F. (1988). Spatial abilities as traits, processes, and knowledge. In R. J. Stenverg (Ed.). Advences in the psychology of human intelligence (pp. 181-248). Hillside, NJ: Erlbaum.
  56. Maeda, Y., & Yoon, S. Y. (2013). A meta-analysis on gender differences in mental rotation ability measured by the Purdue spatial visualization tests: Visualization of rotations (PSVT: R). Educational Psychology Review, 25(1), 69-94. https://doi.org/10.1007/s10648-012-9215-x
  57. McGee, M. G. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, hormonal,and neurological influences. Psychological Bulletin, 86(5), 889-918. https://doi.org/10.1037/0033-2909.86.5.889
  58. Miller, D. I., & Halpern, D. F. (2013). Can spatial training improve long-term outcomes for gifted STEM undergraduates? Learning and Individual Differences, 26, 142-151.
  59. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex "frontal lobe" tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49-100. https://doi.org/10.1006/cogp.1999.0734
  60. Molko, N., Cachia, A., Riviere, D., Mangin, J. F., Bruandet, M., LeBihan, D., & Dehaene, S. (2004). Brain anatomy in Turner syndrome: evidence for impaired social and spatial-numerical networks. Cerebral Cortex, 14(8), 840-850. https://doi.org/10.1093/cercor/bhh042
  61. Munzert, J., Zentgraf, K., Stark, R., & Vaitl, D. (2008). Neural activation in cognitive motor processes: comparing motor imagery and observation of gymnastic movements. Experimental Brain Research, 188(3), 437-444. https://doi.org/10.1007/s00221-008-1376-y
  62. Nachev, P., & Husain, M. (2006). Disorders of visual attention and the posterior parietal cortex. Cortex, 42(5), 766-773. https://doi.org/10.1016/S0010-9452(08)70415-5
  63. Nelson, C. A., Monk, C. S., Lin, J., Carver, L. J., Thomas, K. M., & Truwit, C. L. (2000). Functional neuroanatomy of spatial working memory in children. Developmental Psychology, 36(1), 109. https://doi.org/10.1037//0012-1649.36.1.109
  64. Newcombe, N. S. (2016). Thinking spatially in the science classroom. Current Opinion in Behavioral Sciences, 10, 1-6. https://doi.org/10.1016/j.cobeha.2016.04.010
  65. Newcombe, N., & Shipley, T. F. (2012). Thinking about spatial thinking: New typology, new assessments. In J. S. Gero (Ed.), Studying visual and spatial reasoning for design creativity. Springer: Berlin.
  66. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 9, 97-113. https://doi.org/10.1016/0028-3932(71)90067-4
  67. Ormand, C. J., Manduca, C., Shipley, T. F., Tikoff, B., Harwood, C. L., Atit, K., & Boone, A. P. (2014). Evaluating geoscience students' spatial thinking skills in a multi-institutional classroom study. Journal of Geoscience Education, 62(1), 146-154. https://doi.org/10.5408/13-027.1
  68. Ridderinkhof, K. R., Van Den Wildenberg, W. P., Segalowitz, S. J., & Carter, C. S. (2004). Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain and Cognition, 56(2), 129-140. https://doi.org/10.1016/j.bandc.2004.09.016
  69. Rommelse, N. N., Van der Stigchel, S., & Sergeant, J. A. (2008). A review on eye movement studies in childhood and adolescent psychiatry. Brain and Cognition, 68(3), 391-414. https://doi.org/10.1016/j.bandc.2008.08.025
  70. Rosenbloom, M. H., Schmahmann, J. D., & Price, B. H. (2012). The functional neuroanatomy of decision-making. Journal of Neuropsychiatry and Clinical Neurosciences, 24(3), 266-277. https://doi.org/10.1176/appi.neuropsych.11060139
  71. Ruff, C. C., Knauff, M., Fangmeier, T., & Spreer, J. (2003). Reasoning and working memory: common and distinct neuronal processes. Neuropsychologia, 41(9), 1241-1253. https://doi.org/10.1016/S0028-3932(03)00016-2
  72. Shallice, T. I. M., & Burgess, P. W. (1991). Deficits in strategy application following frontal lobe damage in man. Brain, 114(2), 727-741. https://doi.org/10.1093/brain/114.2.727
  73. Sibley, D. F. (2005). Visual abilities and misconceptions about plate tectonics. Journal of Geoscience Education, 53(4), 471-477. https://doi.org/10.5408/sibley_v53p471
  74. Slotnick, S. D., & Moo, L. R. (2006). Prefrontal cortex hemispheric specialization for categorical and coordinate visual spatial memory. Neuropsychologia, 44(9), 1560-1568. https://doi.org/10.1016/j.neuropsychologia.2006.01.018
  75. Smith, D. T., Jackson, S. R., & Rorden, C. (2005). Transcranial magnetic stimulation of the left human frontal eye fields eliminates the cost of invalid endogenous cues. Neuropsychologia, 43(9), 1288-1296. https://doi.org/10.1016/j.neuropsychologia.2004.12.003
  76. Steinhauer, H. M. (2013). Correlation between a student's performance on the Mental Cutting Test and their 3D parametric modeling ability. Engineering Design Graphics Journal, 76(3).
  77. Tomasino, B., & Gremese, M. (2016). Effects of stimulus type and strategy on mental rotation network: an activation likelihood estimation meta-analysis. Frontiers in Human Neuroscience, 9, 693. https://doi.org/10.3389/fnhum.2015.00693
  78. Trafton, J. G., Trickett, S. B., & Mintz, F. E. (2005). Connecting internal and external representations: Spatial transformations of scientific visualizations. Foundations of Science, 10(1), 89-106. https://doi.org/10.1007/s10699-005-3007-4
  79. Tsujii, T., Sakatani, K., Masuda, S., Akiyama, T., & Watanabe, S. (2011). Evaluating the roles of the inferior frontal gyrus and superior parietal lobule in deductive reasoning: an rTMS study. Neuroimage, 58(2), 640-646. https://doi.org/10.1016/j.neuroimage.2011.06.076
  80. Uttal, D. H., Miller, D. I., & Newcombe, N. S. (2013). Exploring and enhancing spatial thinking: links to achievement in science, technology, engineering, and mathematics?. Current Directions in Psychological Science, 22(5), 367-373. https://doi.org/10.1177/0963721413484756
  81. Valanides, N., Efthymiou, I., & Angeli, C. (2013). Interplay of Internal and External Representations: Students' Drawings and Textual Explanations about Shadow Phenomena. Journal of Visual Literacy, 32(2), 67-84. https://doi.org/10.1080/23796529.2013.11674710
  82. Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817. https://doi.org/10.1037/a0016127
  83. Wendel, K., Vaisanen, O., Malmivuo, J., Gencer, N. G., Vanrumste, B., Durka, P., & de Peralta Menendez, R. G. (2009). EEG/MEG source imaging: methods, challenges, and open issues. Computational Intelligence and Neuroscience, 2009, 13.
  84. Wexler, M., Kosslyn, S. M., & Berthoz, A. (1998). Motor processes in mental rotation. Cognition, 68(1), 77-94. https://doi.org/10.1016/S0010-0277(98)00032-8
  85. Yantis, S., Schwarzbach, J., Serences, J. T., Carlson, R. L., Steinmetz, M. A., Pekar, J. J., & Courtney, S. M. (2002). Transient neural activity in human parietal cortex during spatial attention shifts. Nature Neuroscience, 5(10), 995-1002. https://doi.org/10.1038/nn921
  86. Yilmaz, H. B. (2009). On the development and measurement of spatial ability. International Electronic Journal of Elementary Education, 1(2), 83-96.
  87. Yoon, S. Y. (2011). Psychometric properties of the Revised Spatial Visualization Tests: Visualization of Rotations (The Revised PSVT:R). Doctoral Dissertation, Purdue University.
  88. Yoon, S. Y., & Min, K. H. (2016). College students' performance in an introductory atmospheric science course: associations with spatial ability. Meteorological Applications, 23(3), 409-419. https://doi.org/10.1002/met.1565
  89. Zacks, J. M. (2008). Neuroimaging studies of mental rotation: A meta-analysis and review. Journal of Cognitive Neuroscience, 20(1), 1-19. https://doi.org/10.1162/jocn.2008.20013