References
- Afad (2019), Disaster and Emergency Management Presidency of Turkey. https://deprem.afad.gov.tr.
- Ansal, A., Tonuk, G. and Kurtulus, A. (2011), "Zemin buyutme analizleri ve sahaya ozel tasarim depremi ozelliklerinin belirlenmesi [Soil Amplification Analysis and Determination of Site-Specific Design Earthquake Characteristics]", Proceedings of the Turkey Earthquake Engineering and Seismology Conference (in Turkish).
- ASTM D4015-87 (2000), Standard Test Methods for Modulus and Damping of Soils by Resonant-Column Method.
- Banerjee, S. and Balaji, P. (2018), "Effect of anisotropy on cyclic properties of chennai marine clay", Int. J. Geosynth. Ground Eng., 27, 1-11 https://doi.org/10.1007/s40891-018-0144-8.
- Bayat, M. and Ghalandarzadeh, A. (2017), "Stiffness degradation and damping ratio of sand-gravel mixtures under saturated state", Int. J. Civ. Eng., 16(10), 1261-1277. https://doi.org/10.1007/s40999-017-0274-8.
- Bedr, S., Mezouar, N., Verrucci, L. and Lanzo, G. (2018), "Investigation on shear modulus and damping ratio of Algiers marls under cyclic and dynamic loading conditions", B. Eng. Geol. Environ., 78(4), 2473-2493. https://doi.org/10.1007/s10064-018-1310-x.
- Clayton, C.R.I., Priest, J.A., Bui, M., Zervos, A. and Kim, S.G. (2009), "The Stokoe resonant column apparatus: Effects of stiffness, mass and specimen fixity", Geotechnique, 59(5), 429-437. https://doi.org/10.1680/geot.2007.00096.
- Dammala, P.K., Kumar, S.S., Krishna, A.M. and Bhattacharya, S. (2019), "Dynamic soil properties and liquefaction potential of northeast Indian soil for non‑linear effective stress analysis", B. Earthq. Eng., 17(6), 2899-2933. https://doi.org/10.1007/s10518-019-00592-6.
- Darendeli, M.B. (2001), "Development of a new family of normalized modulus", Ph.D. Thesis, The University of Texas, Austin, Texas, U.S.A.
- El Mohtar, C.S., Drnevich, V.P., Santagata, M. and Bobet, A. (2013), "Combined resonant column and cyclic triaxial tests for measuring undrained shear modulus reduction of sand with plastic fines", Geotech. Test. J., 36(4), 1-9. http://doi:10.1520/GTJ20120129.
- Guler, E. and Afacan, K.B. (2019), "Effect of frequency content on the dynamic properties of the sand", Eskisehir Tech. Univ. J. Sci. Technol. A Appl. Sci. Eng., 20(1), 70-79. https://doi.org/10.18038/aubtda.459191.
- Hardin, B. and Black, W. (1968), "Vibration modulus of normally consolidated clay", J. Soil Mech. Found. Div., 94(2), 353-369. https://doi.org/10.1061/JSFEAQ.0001100
- Hardin, B.O. and Drnevich, V.P. (1972), "Shear modulus and damping in soils: Measurement and parameter effects", J. Soil Mech. Found. Div., 98(7), 667-692. https://doi.org/10.1061/JSFEAQ.0001760
- Hardin, B.O. and Richart, F.E. (1963), "Elastic wave velocities in granular soils", J. Soil Mech. Found. Div., 89, 33-65. https://doi.org/10.1061/JSFEAQ.0000493
- Im, J., Tran, A.T.P., Chang, I. and Cho, G. (2017), "Dynamic properties of gel-type biopolymer-treated sands evaluated by resonant column (RC) Tests", Geomech. Eng., 12(5), 815-830. https://doi.org/10.12989/gae.2017.12.5.815.
- Jafarian, Y. and Javdanian, H. (2019), "Dynamic properties of calcareous sand from the Persian Gulf in comparison with siliceous sands database", Int. J. Civ. Eng., 1-5 https://doi.org/10.1007/s40999-019-00402-9.
- Jafarian, Y., Javdanian, H. and Haddad, A. (2018a), "Straindependent dynamic properties of Bushehr siliceous-carbonate sand: Experimental and comparative study", Soil Dyn. Earthq. Eng., 107, 339-349. https://doi.org/10.1016/j.soildyn.2018.01.033.
- Jafarian, Y., Javdanian, H. and Haddad, A. (2018b), "Dynamic properties of calcareous and siliceous sands under isotropic and anisotropic stress conditions", Soils Found., 58(1), 172-184. https://doi.org/10.1016/j.sandf.2017.11.010.
- Kallioglou, P., Tika, Th., Koninis, G., Papadopoulos, St. and Pitilakis, K. (2008), "Shear modulus and damping ratio of organic soils", Geotech. Geol. Eng., 27(2), 217. https://doi.org/10.1007/s10706-008-9224-1.
- Keene, A.K., Jaffal, H., Stokoe, K.H., El Mohtar, C.S., Reyes, A., Ayala, R. and Parra, D. (2017), "Linear and nonlinear shear moduli of materials associated with heap leach-pad mining", Geotech. Front., 281, 160-170. https://doi.org/10.1061/9780784480489.017.
- Khan, Z., El Naggar, M.H. and Cascante, G. (2011), "Frequency dependent dynamic properties from resonant column and cyclic triaxial tests", J. Franklin Inst., 348, 1363-1376. https://doi.org/10.1016/j.jfranklin.2010.04.003.
- Kokusho, T. (1980), "Cyclic triaxial test of dynamic soil properties for wide strain range", Soils Found., 20(2), 45-60. https://doi.org/10.3208/sandf1972.20.2_45.
- Kokusho, T., Yoshida, Y. and Esashi, Y. (1982), "Dynamic properties of soft clay for wide strain range", Soils Found., 22(4), 1-18. https://doi.org/10.3208/sandf1972.22.4_1.
- Kramer, S.L. (1996), Geotechnical Earthquake Engineering, Prentice-Hall, Inc., Simon & Schuster/A Viacom Company Upper Saddle River, New Jersey, U.S.A.
- Kumar, J. and Clayton, C.R.I. (2007), "Effect of sample torsional stiffness on resonant column test results", Can. Geotech. J., 44(2), 221-230. http://doi.org/10.1139/T06-099.
- Kumar, S., Krishna, A.M. and Dey, A. (2017), "Evaluation of dynamic properties of sandy soil at high cyclic strains", Soil Dyn. Earthq. Eng., 99, 157-167. http://doi.org/10.1016/j.soildyn.2017.05.016.
- Li, H. and Senetakis, K. (2018), "Effects of particle grading and stress state on strain-nonlinearity of shear modulus and damping ratio of sand evaluated by resonant-column testing", J. Earthq. Eng., 24(12), 1-27. https://doi.org/10.1080/13632469.2018.1487349.
- Marcuson, W. and Wahls, H. (1978), Effects of Time on Damping Ratio of Clays, in Dynamic Geotechnical Testing, 126-147.
- Morsy, A.M., Salem, M.A. and Elmamlouk, H. (2019), "Evaluation of dynamic properties of calcareous sands in Egypt at small and medium shear strain ranges", Soil Dyn. Earthq. Eng., 116, 692-708. https://doi.org/10.1016/j.soildyn.2018.09.030.
- Naeini, S.A. and Baziar, M.H. (2004), "Effect of fines content on steady-state strength of mixed and layered samples of a sand", Soil Dyn. Earthq. Eng., 24(3), 181-187. https://doi.org/10.1016/j.soildyn.2003.11.003.
- Okur, D.V. and Ansal, A. (2007), "Stiffness degradation of natural fine grained soils during cyclic loading", Soil Dyn. Earthq. Eng., 27(9), 843-854. https://doi.org/10.1016/j.soildyn.2007.01.005.
- Okur, V. and Ansal, A. (2009), "Tekrarli yuk etkisinde kil zeminlerin lineer olmayan elastik davranisi [Non-linear eastic response of clay soils under cyclic loadings]", J. Eng. Archi. Facult. Eskisehir Osmangazi Univ., 22(1), 169-185 (in Turkish).
- Sexena, S.K. and Reddy, K.R. (1989), "Dynamic ,oduli and damping ratios for monterey no.0 sand by resonant column tests", Soils Found., 29(2), 37-51. https://doi.org/10.3208/sandf1972.29.2_37.
- Sitharam, T., Govindaraju, L. and Srinivasa, M.B. (2004), "Evaluation of liquefaction potential and dynamic properties of silty sand using cyclic triaxial testing", Geotech. Test. J., 27(5), 423-429. https://doi.org/10.1520/GTJ11894.
- Sonmezer, Y.B. (2019), "Energy-based evaluation of liquefaction potential of uniform sands", Geomech. Eng., 17(2), 145-156. https://doi.org/10.12989/gae.2019.17.2.145.
- Stewart, J.P., Afshari, K. and Hashash, Y.M.A. (2014), "Guidelines for performing hazard-consistent one-dimensional ground response analysis for ground motion prediction", Report PEER. 16, 152.
- Vucetic, M, and Dobry, R. (1991), "Effect of soil plasticity on cyclic response", J. Geotech. Eng., 117, 89-107. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:1(89).