과제정보
This research was supported by 2021 Baekseok University Research Fund.
참고문헌
- Nikou, M., Mansourfar, G., & Bagherzadeh, J. (2019). Stock price prediction using DEEP learning algorithm and its comparison with machine learning algorithms. Intelligent Systems in Accounting, Finance and Management, 26(4), 164-174. https://doi.org/10.1002/isaf.1459
- Kim, S. W. (2021). Profitability of Trading System for Cryptocurrency. Journal of Digital Contents Society, 22(3), 555-562. https://doi.org/10.9728/dcs.2021.22.3.555
- Hong, S. (2020). A study on stock price prediction system based on text mining method using LSTM and stock market news. Journal of Digital Convergence, 18(7), 223-228. https://doi.org/10.14400/JDC.2020.18.7.223
- Hong, S. (2020). Research on Stock price prediction system based on BLSTM. Journal of the Korea Convergence Society, 11(10), 19-24. https://doi.org/10.15207/JKCS.2020.11.10.019
- Hoyos-Rivera, G. J., Gomes, R. L., Willrich, R., & Courtiat, J. P. (2006). Colab: A new paradigm and tool for collaboratively browsing the web. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 36(6), 1074-1085. https://doi.org/10.1109/tsmca.2006.883173
- Phelps, R., Krasnicki, M., Rutenbar, R. A., Carley, L. R., & Hellums, J. R. (2000). Anaconda: simulation-based synthesis of analog circuits via stochastic pattern search. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 19(6), 703-717. https://doi.org/10.1109/43.848091
- Gaur, S. (2020). Global forecasting of covid-19 using ARIMA based FB-Prophet. International Journal of Engineering Applied Sciences and Technology, 5(2), 463-467. https://doi.org/10.33564/IJEAST.2020.v05i02.077
- Van Der Walt, S., Colbert, S. C., & Varoquaux, G. (2011). The NumPy array: a structure for efficient numerical computation. Computing in science & engineering, 13(2), 22-30. https://doi.org/10.1109/MCSE.2011.37
- Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. IEEE Annals of the History of Computing, 9(03), 90-95.
- Chikkakrishna, N. K., Hardik, C., Deepika, K., & Sparsha, N. (2019, December). Short-term traffic prediction using sarima and FbPROPHET. In 2019 IEEE 16th India Council International Conference (INDICON) (pp. 1-4). IEEE.
- Carneiro, T., Da Nobrega, R. V. M., Nepomuceno, T., Bian, G. B., De Albuquerque, V. H. C., & Reboucas Filho, P. P. (2018). Performance analysis of google colaboratory as a tool for accelerating deep learning applications. IEEE Access, 6, 61677-61685. https://doi.org/10.1109/access.2018.2874767
- Lahmiri, S., & Bekiros, S. (2019). Cryptocurrency forecasting with deep learning chaotic neural networks. Chaos, Solitons & Fractals, 118, 35-40. https://doi.org/10.1016/j.chaos.2018.11.014
- Patel, M. M., Tanwar, S., Gupta, R., & Kumar, N. (2020). A deep learning-based cryptocurrency price prediction scheme for financial institutions. Journal of Information Security and Applications, 55, 102583. https://doi.org/10.1016/j.jisa.2020.102583
- Kumar, D., & Rath, S. K. (2020). Predicting the trends of price for ethereum using deep learning techniques. In Artificial Intelligence and Evolutionary Computations in Engineering Systems (pp. 103-114). Springer, Singapore.
- Zoumpekas, T., Houstis, E., & Vavalis, M. (2020). ETH analysis and predictions utilizing deep learning. Expert Systems with Applications, 162, 113866. https://doi.org/10.1016/j.eswa.2020.113866
- Introduction to time series forecasting package Prophet. Hyper Connect Tech Blog[Website]. (2020.03.09.). URL:https://hyperconnect.github.io/2020/03/09/prophet-package.html