DOI QR코드

DOI QR Code

오토인코더 기반의 IoT 연계 처리를 통한 IoT 데이터 신뢰 기법

IoT data trust techniques based on auto-encoder through IoT-linked processing

  • 연용호 (목원대학교 소프트웨어교양학부) ;
  • 정윤수 (목원대학교 정보통신융합공학부)
  • Yon, Yong-Ho (Department of Software Liberal Art, Mokwon University) ;
  • Jeong, Yoon-Su (Division of Information and Communication Convergence Engineering, Mokwon University)
  • 투고 : 2021.09.11
  • 심사 : 2021.11.20
  • 발행 : 2021.11.28

초록

분산 환경에서 다양하게 사용되고 있는 IoT 장치는 의료·환경·교통·바이오·공공장소 등 사용 분야가 다양해지면서 IoT 장치에서 송·수신되는 데이터의 중요도가 점점 증가하고 있다. 본 논문에서는 IoT 데이터의 신뢰성을 보장하기 위한 방법으로 수 많은 데이터들을 다양한 중요 속성별로 분류·처리하도록 오토인코더 기반의 IoT 연계 처리 기법을 제안한다. 제안 기법은 오토인코더 기반의 IoT 연계 처리를 위해서 IoT 데이터를 특성별로 블록체인으로 묶어 처리하도록 IoT 데이터별로 상관관계 지수를 사용한다. 제안 기법은 IoT 데이터의 신뢰성을 보장하기 위해서 상관관계 지수에 적용된 블록체인 기반의 n-계층 구조로 확장 운영한다. 또한, 제안 기법은 IoT 데이터의 상관관계 지수에 따라 IoT 수집 데이터에 가중치를 적용하여 IoT 데이터를 선택할 수 있을 뿐만 아니라 실시간으로 IoT 데이터의 무결성을 검증하는 비용을 낮출 수 있다. 제안 기법은 n-계층 구조로 IoT 데이터를 확장할 수 있도록 IoT 데이터의 처리 비용을 유지한다.

IoT devices, which are used in various ways in distributed environments, are becoming more important in data transmitted and received from IoT devices as fields of use such as medical, environment, transportation, bio, and public places are diversified. In this paper, as a method to ensure the reliability of IoT data, an autoencoder-based IoT-linked processing technique is proposed to classify and process numerous data by various important attributes. The proposed technique uses correlation indices for each IoT data so that IoT data is grouped and processed by blockchain by characteristics for IoT linkage processing based on autoencoder. The proposed technique expands and operates into a blockchain-based n-layer structure applied to the correlation index to ensure the reliability of IoT data. In addition, the proposed technique can not only select IoT data by applying weights to IoT collection data according to the correlation index of IoT data, but also reduce the cost of verifying the integrity of IoT data in real time. The proposed technique maintains the processing cost of IoT data so that IoT data can be expanded to an n-layer structure.

키워드

참고문헌

  1. A. Shahnaz, U. Qamar & A. Khalid, (2019). Using Blockchain for Electronic Health Records. IEEE Access, 7, pp. 147782-147795. https://doi.org/10.1109/access.2019.2946373
  2. S. Son, J. Y. Lee, M. H. Kim, S. J. Yu, A. K. Das & Y. H. Park, (2020). Design of Secure Authentication Protocol for Cloud-Assisted Telecare Medical Information System Using Blockchain. IEEE Access, 8, 192177-192191. https://doi.org/10.1109/access.2020.3032680
  3. X. Yang, X. Pei, M. Wang, T. Li & C. Wang, (2020). Multi-Replica and Multi-Cloud Data Public Audit Scheme Based on Blockchain. IEEE Access, 8, 144809-144822. https://doi.org/10.1109/access.2020.3014510
  4. M. K. Choi, C. Y. Yeun & P. H. Seong, (2020). A Novel Monitoring System for the Data Integrity of Reactor Protection System Using Blockchain Technology. IEEE Access, 8, 118732-118740. https://doi.org/10.1109/access.2020.3005134
  5. A. Majumdar & G. Mohan, (2020). Distributed Fractionalized Data Networks For Data Integrity. Proceedings of the 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), 1-3.
  6. U. Imtiaz & H. M. Qusay. (2019). A Two-Level Hybrid Model for Anomalous Activity Detection in IoT Networks. Proceedings of the 2019 16th IEEE Annual Consumer Communications & Networking Conference(CCNC), 1-6.
  7. Machine Learning Repository. (2021). https://archive.ics.uci.edu/ml/index.php
  8. K. Igor, S. Igor & B. Alexander. (2018). Framework for Mobiel Internet of Things Security Monitoring Based on Big Data Processing and Machine Learning. IEEE ACCESS, 6, 72714-72723. https://doi.org/10.1109/access.2018.2881998
  9. T. Mahbod, B. Ebrahim, L. Wei & A. G. Ali. (2009). A Detailed Analysis of the KDD CUP 99 Data Set. Proceedings of the 2009 IEEE symposium on computational Intelligence in security and defence application, 1-6.
  10. NSL, http://www.nsl.cs.unb.ca/NSL-KDD.
  11. H. Chae & S. H. Choi. (2014). Feature Selection for efficient Intrusion Detection using Attribute Ratio. International Journal of Computers and Communications, 8, 134-139.
  12. Machine Learning Repository. (2021). https://archive.ics.uci.edu/ml/datasets.php?format=&task=&att=&area=&numAtt=greater100&numIns=&type=seq&sort=nameDown&view=list.
  13. B. Ravishankar, P. Kulkarni & M. V. Vishnudas, (2020). Blockchain-based Database to Ensure Data Integrity in Cloud Computing Environments. Proceedings of the 2020 International conference on Mainstreaming Block chain Implementation (ICOMBI), 1-4.
  14. P. Huang, K. Fan, H. Yang, K. Zhang, H. Li & Y. Yang, (2020). A Collaborative Auditing Blockchain for Trustworthy Data Integrity in Cloud Storage System. IEEE Access, 8, 94780-94794. https://doi.org/10.1109/access.2020.2993606
  15. Y. Meidan, M. Bohadana, A. Shabtai, M. Ochoa, N. O. Tippenhauer, J. D. Guarnizo & Y. Elovici. (2017). Detection of unauthorized iot devices using machine learning techniques. preprint arXiv:1709.04647.