DOI QR코드

DOI QR Code

지역특성인자의 상호연관성을 고려한 강우-유출모형 매개변수 지역화

Regionalization of rainfall-runoff model parameters based on the correlation of regional characteristic factors

  • 김진국 (한국건설기술연구원 수자원하천연구본부) ;
  • 오랑치맥 솜야 (세종대학교 건설환경공학과) ;
  • 김태정 (한국수자원조사기술원 기획경영본부) ;
  • 권현한 (세종대학교 건설환경공학과)
  • Kim, Jin-Guk (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Sumyia, Uranchimeg (Department of Civil and Environmental Engineering, Sejong University) ;
  • Kim, Tae-Jeong (Planning & Management Division, Korea Institute of Hydrological Survey) ;
  • Kwon, Hyun-Han (Department of Civil & Environmental Engineering, Sejong University)
  • 투고 : 2021.10.19
  • 심사 : 2021.10.27
  • 발행 : 2021.11.30

초록

수자원 계획 수립시 인위적인 하천수의 사용 및 조절 과정을 거치지 않는 자연유량 상태를 기반으로 이루어지며, 관측자료를 이용하거나 장기유출모형을 이용한 방법 등을 통해 산정할 수 있다. 그러나, 자연적인 유출 상태를 보이는 유역은 매우 제한적이며, 미계측유역은 수문모형을 구축한 후 이를 전이시켜 산정하는 등 신뢰성 있는 수문자료는 여전히 부족한 실정이다. 본 연구에서는 GR4J 강우-유출모형을 활용하여 14개 댐 상류 유역에 대한 매개변수 최적화를 수행하여 자연유량의 재현성을 평가하였다. 매개변수의 불확실성을 정량적으로 고려하기 위해 Bayesian 이론을 도입하였으며, 매개변수의 사후분포로부터 추출되는 다수의 매개변수를 지역화에 활용하였다. 최종적으로 최적 매개변수와 유역의 특성을 갖는 인자에 대한 상관관계를 파악해 유역특성인자를 선별하였으며, 인자 사이의 상관성을 효과적으로 고려하기 위하여 Copula 함수를 활용해 매개변수 지역화 모델로 확장하였다. 결과적으로 지역 매개변수를 활용해 산정된 유량과 14개 댐 관측 유입량이 약 0.8 이상의 높은 상관성을 확인하였다. 본 연구에서 제안한 방법론은 미계측유역의 강우-유출모형 매개변수 추정시 유역특성을 고려한 지역 매개변수의 추정이 가능하다는 측면에서 유리한 장점을 확인할 수 있으며, 동시에 불확실성 정보를 제공함으로써 미계측유역의 자연유량 예측 모형으로 활용 가능할 것으로 판단된다.

A water resource plan is routinely based on a natural flow and can be estimated using observed streamflow data or a long-term continuous rainfall-runoff model. However, the watershed with the natural flow is very limited to the upstream area of the dam. In particular, for the ungauged watershed, a rainfall-runoff model is established for the gauged watershed, and the model is then applied to the ungauged watershed by transferring the associated parameters. In this study, the GR4J rainfall-runoff model is mainly used to regionalize the parameters that are estimated from the 14 dam watershed via an optimization process. In terms of optimizing the parameters, the Bayesian approach was applied to consider the uncertainty of parameters quantitatively, and a number of parameter samples obtained from the posterior distribution were used for the regionalization. Here, the relationship between the estimated parameters and the topographical factors was first identified, and the dependencies between them are effectively modeled by a Copula function approach to obtain the regionalized parameters. The predicted streamflow with the use of regionalized parameters showed a good agreement with that of the observed with a correlation of about 0.8. It was found that the proposed regionalized framework is able to effectively simulate streamflow for the ungauged watersheds by the use of the regionalized parameters, along with the associated uncertainty, informed by the basin characteristics.

키워드

과제정보

본 연구는 국토교통부/국토교통과학기술진흥원 지원으로 수행되었음(과제번호 21AWMP-B121100-06).

참고문헌

  1. Akaike, H. (1974). "A new look at the statistical model identification." IEEE Transactions on Automatic Control, Vol. 19, No. 6, pp. 716-723. https://doi.org/10.1109/TAC.1974.1100705
  2. Allen, R.G., Pereira, L.S., Raes, D., and Smith, M. (1998). "Crop evapotranspiration-guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56." Fao, Rome, Vol. 300, No. 9, D05109.
  3. Bagirov, A.M., Rubinov, A.M., and Zhang, J. (2005). "Local optimization method with global multidimensional search." Journal of Global Optimization, Vol. 32, No. 2, pp. 161-179. https://doi.org/10.1007/s10898-004-2700-0
  4. Brooks, S.P., and Gelman, A. (1998). "General methods for monitoring convergence of iterative simulations." Journal of Computational and Graphical Statistics, Vol. 7, No. 4, pp. 434-455. https://doi.org/10.2307/1390675
  5. Brooks, S.P., and Roberts, G.O. (1998). "Assessing convergence of Markov chain Monte Carlo algorithms." Statistics and Computing, Vol. 8, No. 4, pp. 319-335. https://doi.org/10.1023/A:1008820505350
  6. Chae, B.S., Choi, S.J., Ahn, J.H., and Kim, T.W. (2018). "Estimation of flood quantile in ungauged watersheds for flood damage analysis based on flood index of natural flow." Journal of the Korean Society of Civil Engineers, Vol. 38, No. 1, pp. 175-182. (in Korean) https://doi.org/10.12652/Ksce.2018.38.1.0175
  7. Chang, H.J., Lee, H.J., and Lee, H.S. (2019). "Regionalization of conceptual rainfall-runoff model to simulate runoff induced by typhoons." Journal of Korean Society of Disaster and Security, Vol. 12, No. 4, pp. 63-72. https://doi.org/10.21729/KSDS.2019.12.4.63
  8. Duan, Q., Schaake, J., Andreassian, V., Franks, S., Goteti, G., Gupta, H.V., and Hay, L. (2006). "Model Parameter Estimation Experiment (MOPEX): An overview of science strategy and major results from the second and third workshops." Journal of Hydrology, Vol. 320, No. 1-2, pp. 3-17. https://doi.org/10.1016/j.jhydrol.2005.07.031
  9. Duan, Q., Sorooshian, S., and Gupta, V. (1992). "Effective and efficient global optimization for conceptual rainfall-runoff models." Water Resources Research, Vol. 28, No. 4, pp. 1015-1031. https://doi.org/10.1029/91WR02985
  10. Edijatno, N., and Michel, C. (1989). "Un modele pluie-debit journalier a trois parametres." La Houille Blanche, Vol. 2, pp. 113-121. https://doi.org/10.1051/lhb/1989007
  11. Findley, D.F. (1991). "Counter examples to parsimony and BIC." Annals of the Institute of Statistical Mathematics, Vol. 43, No. 3, pp. 505-514. https://doi.org/10.1007/BF00053369
  12. Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004). Bayesian data analysis (2nd ed.). Chapman and Hall/CRC, CRC press, Boca Raton, U.S.
  13. Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., and Rubin, D.B. (2013). Bayesian data analysis, CRC press, U.S.
  14. Grayson, R.B., Moore, I.D., and McMahon, T.A. (1992). "Physically based hydrologic modeling: 2. Is the concept realistic?." Water Resources Research, Vol. 28, No. 10, pp. 2659-2666. https://doi.org/10.1029/92WR01259
  15. Im, S.S., Yoo, D.G., and Kim, J.H. (2012). "Improvement of GR4J model applying soil moisture accounting process and its application in Korea Basin." Journal of the Korean Society of Hazard Mitigation, Vol. 12, No. 3, pp. 255-262. https://doi.org/10.9798/KOSHAM.2012.12.3.255
  16. Kang, M.G., Lee, J.H., and Park, K.W. (2013). "Parameter regionalization of a tank model for simulating runoffs from ungauged watersheds." Journal of Korea Water Resources Association, Vol. 46, No. 5, pp. 519-530. https://doi.org/10.3741/JKWRA.2013.46.5.519
  17. Kim, J.G., Kim, J.Y., Ban, W.S., and Kwon, H.H. (2019). "A development of bivariate regional drought frequency analysis model using copula function." Journal of Korea Water Resources Association, Vol. 52, No. 12, pp. 985-999. https://doi.org/10.3741/JKWRA.2019.52.12.985
  18. Kim, J.G., Kim, J.Y., Choi, H.G., and Kwon, H.H. (2018). "Estimation of design floods for ungauged watersheds using a scaling-based regionalization approach." Journal of Korea Water Resources Association, Vol. 51, No. 9, pp. 769-782. https://doi.org/10.3741/JKWRA.2018.51.9.769
  19. Kim, J.-Y., So, B.-J., Kim, T.-W., and Kwon, H.-H. (2016). "A development of trivariate drought frequency analysis approach using copula function." Journal of Korea Water Resource Associate, Vol. 49, No. 10, pp. 823-833.
  20. Kim, T.J., Jeong, G.I., Kim, K.Y., and Kwon, H.H. (2015). "A study on regionalization of parameters for sacramento continuous rainfall-runoff model using watershed characteristics." Journal of Korea Water Resources Association, Vol. 48, No. 10, pp. 793-806. https://doi.org/10.3741/JKWRA.2015.48.10.793
  21. Kim, Y.T., Park, M., and Kwon, H.H. (2020). "Optimization of PRISM parameters using the SCEM-UA algorithm for gridded daily time series precipitation." Journal of Korea Water Resources Association, Vol. 53, No. 10, pp. 903-915. https://doi.org/10.3741/JKWRA.2020.53.10.903
  22. Kwon, H.-H., Park, D.-H., and Moon, Y.I. (2004). "Derivation of flood frequency curve using uncertainty analysis of single event rainfall-runoff model-uncertainty analysis of rainfall-runoff model." Journal of The Korean Society of Civil Engineers, Vol. 24, No. 3B, pp. 229-239. (in Korean)
  23. Lee, B.-J., Jung, I.-W., and Bae, D.-H. (2009). "Parameter regionalization of semi-distributed runoff model using multivariate statistical analysis." Journal of Korea Water Resources Association, Vol. 42, No. 2, pp. 149-160. https://doi.org/10.3741/JKWRA.2009.42.2.149
  24. Lee, H.-S., and Moon, Y.-I. (2007). "Application of rainfall runoff model for an ungauged catchment." Journal of the Korean Society of Civil Engineers, 27, No. 5B, pp. 489-498.
  25. Lee, S.-H., and Kang, S.-U. (2007). "A parameter regionalization study of a modified tank model using characteristic factors of watersheds." Journal of the Korean Society of Civil Engineers, Vol. 27, No. 4B, pp. 379-385.
  26. Merz, R., and Bloschl, G. (2004). "Regionalisation of catchment model parameters." Journal of Hydrology, Vol. 287, No. 1, pp. 95-123. https://doi.org/10.1016/j.jhydrol.2003.09.028
  27. Parajka, J., Merz, R., and Bloschl, G. (2005). "A comparison of regionalisation methods for catchment model parameters." Hydrology and Earth System Sciences Discussions, Vol. 9, No. 3, pp. 157-171. https://doi.org/10.5194/hess-9-157-2005
  28. Perrin, C., Michel, C., and Andreassian, V. (2003). "Improvement of a parsimonious model for streamflow simulation." Journal of Hydrology, Vol. 279, No. 1-4, pp. 275-289. https://doi.org/10.1016/S0022-1694(03)00225-7
  29. Vieux, B.E. (2001). "Distributed hydrologic modeling using GIS." Distributed hydrologic modeling using GIS, Springer, Dordrecht, Netherlands, pp. 1-17.
  30. Vrugt, J.A., Gupta, H.V., Bouten, W., and Sorooshian, S. (2003). "A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters." Water Resources Research, Vol. 39, No. 8, pp. 1-16.
  31. Yu, J.U., Park, M.H., Kim, J.G., and Kwon, H.H. (2021). "Evaluation of conceptual rainfall-runoff models for different flow regimes and development of ensemble model." Journal of Korea Water Resources Association, Vol. 54, No. 2, pp. 105-119. https://doi.org/10.3741/JKWRA.2021.54.2.105