DOI QR코드

DOI QR Code

Fabrication of a Full-Scale Pilot Model of a Cost-Effective Sodium Nickel-Iron Chloride Battery Over 40 Ah

  • Lee, Dong-Geun (Department of Materials Chemistry and Engineering, Konkuk University) ;
  • Ahn, Byeong-Min (Korea Institute of Materials Science (KIMS)) ;
  • Ahn, Cheol-Woo (Korea Institute of Materials Science (KIMS)) ;
  • Choi, Joon-Hwan (Korea Institute of Materials Science (KIMS)) ;
  • Lee, Dae-Han (Department of Materials Chemistry and Engineering, Konkuk University) ;
  • Lim, Sung-Ki (Department of Materials Chemistry and Engineering, Konkuk University)
  • 투고 : 2021.01.19
  • 심사 : 2021.03.10
  • 발행 : 2021.11.28

초록

To fabricate a full-scale pilot model of the cost-effective Na-(Ni,Fe)Cl2 cell, a Na-beta-alumina solid electrolyte (BASE) was developed by applying a one-step synthesis cum sintering process as an alternative to the conventional solid-state reaction process. Also, Fe metal powder, which is cheaper than Ni, was mixed with Ni metal powder, and was used for cathode material to reduce the cost of raw material. As a result, we then developed a prototype Na-(Ni,Fe)Cl2 cell. Consequently, the Ni content in the Na-(Ni,Fe)Cl2 cell is decreased to approximately (20 to 50) wt.%. The #1 prototype cell (dimensions: 34 mm × 34 mm × 235 mm) showed a cell capacity of 15.9 Ah, and 160.3 mAh g-1 (per the Ni-Fe composite), while the #2 prototype cell (dimensions: 50 mm × 50 mm × 335 mm) showed a cell capacity of 49.4 Ah, and 153.2 mAh g-1 at the 2nd cycle.

키워드

과제정보

This work was supported by a Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (No. 20172420108430, Development of high-capacity technology of high-safety sodium-ferronickel chloride battery). This paper was supported by Konkuk University Researcher Fund in 2019.

참고문헌

  1. J.L. Sudworth, J. Power Sources., 1994, 51(1-2), 105-114. https://doi.org/10.1016/0378-7753(94)01967-3
  2. T. Oshima, M. Kajita, A. Okuno, Int. J. Appl. Ceram. Technol., 2004, 1(3), 269-276. https://doi.org/10.1111/j.1744-7402.2004.tb00179.x
  3. Daniel H. Doughty, Paul C. Butler, Abbas A. Akhil, Nancy H. Clark, John D. Boyes, J. Electrochem Soc Interface., 2010, 19(3), 49-53.
  4. Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Chem. Rev., 2011, 111(5), 3577-3613. https://doi.org/10.1021/cr100290v
  5. J. E. Battles, Int. Mater. Rev., 1989, 34(1), 1-18. https://doi.org/10.1179/095066089790150474
  6. K. B. Hueso, M. Armand, T. Rojo, Energy Environ. Sci., 2013, 6(3), 734-749. https://doi.org/10.1039/c3ee24086j
  7. T. M. O'Sullivan, C. M. Bingham and R. E. Clark, International Symposium on Power Electronics Electric Drives Automation and Motion (SPEEDAM), Institution of Electronic and Electrical Engineers., 2006.
  8. H. J. Chang, X. Lu, J. F. Bonnett, N. L. Canfield, S. Son, Y. Park, K. Jung, V. L. Sprenkle, G. Li, J. Power Sources., 2017, 348, 150-157. https://doi.org/10.1016/j.jpowsour.2017.02.059
  9. J.Y. Kim, N.L. Canfield, J.F. Bonnett, V.L. Sprenkle, K. Jung, I. Hong, Solid State Ionics., 2015, 278, 192-197. https://doi.org/10.1016/j.ssi.2015.06.013
  10. K. Jung, H. Chang, Jeffery F. Bonnett, Nathan L. Canfield, Vincent L. Sprenkle, Guosheng Li, J. Power Sources., 2018, 396, 297-303. https://doi.org/10.1016/j.jpowsour.2018.06.039
  11. Guosheng Li, X. Lu, Jin Y. Kim, Kerry D. Meinhardt, Hee Jung Chang, Nathan L. Canfield & Vincent L. Sprenkle, Nat. Commun., 2016, 7(1), 1-6.
  12. C. W. Ahn, M. Kim, B. D. Hahn, I. C. Hong, W. S. Kim, G. Y. Moon, H. S. Lee, K. Y. Jung, Y. C. Park, J. H. Choi, J. Power Sources., 2016, 329, 50-56. https://doi.org/10.1016/j.jpowsour.2016.08.068
  13. B. M. Ahn, C. W. Ahn, B. D. Hahn, J. J. Choi, Y.D. Kim, S. K. Lim, K. Y. Jung, Y. C. Park, J. H. Choi, Compos. B. Eng., 2019, 168, 442-447. https://doi.org/10.1016/j.compositesb.2019.03.064
  14. X. Lu, G. Xia, J. P. Lemmon, Z. Yang, J. Power Sources., 2010, 195(9), 2431-2442. https://doi.org/10.1016/j.jpowsour.2009.11.120
  15. Y. Goro, S. Kazutaka, Bull. Chem. Soc. Jpn., 1968, 41(1), 93-99. https://doi.org/10.1246/bcsj.41.93
  16. C. A. Beevers, M. A. S. Ross, Z Kristallogr Cryst Mater., 1937, 97(1-6), 59-66. https://doi.org/10.1524/zkri.1937.97.1.59
  17. Y. Yu Yao, J. T. Kummer, J. Radioanal. Nucl. Chem., 1967, 29(9), 2453-2466. https://doi.org/10.1016/0022-1902(67)80301-4
  18. J. Fally, C. Lasne, Y. Lazennec, P. Margotin, J. Electrochem. Soc., 1973, 120(1), 1292. https://doi.org/10.1149/1.2403249
  19. A. P. Kroon, G. W. Schaefer, F. Aldinger, Chem. Mater., 1995, 7(5), 878-887. https://doi.org/10.1021/cm00053a011
  20. G. W. Schaefer, H. J. Kim, F. Aldinger, Solid State Ion., 1997, 97(1-4), 285-289. https://doi.org/10.1016/S0167-2738(97)00027-1
  21. L. P. Yang, S. J. Shan, X. L. Wei, X. M. Liu, H. Yang, X. D. Shen, Ceram. Int., 2014, 40(7), 9055-9060. https://doi.org/10.1016/j.ceramint.2014.01.118
  22. S. P. Butee, K. R. Kambale, M. Firodiya, Process. Appl. Ceram., 2016, 10(2), 67-72. https://doi.org/10.2298/PAC1602067B
  23. S. J. Shan, L. P. Yang, X. M. Liu, X. L. Wei, H. Yang, X. D. Shen, J. Alloys Compd., 2013, 563, 176-179. https://doi.org/10.1016/j.jallcom.2013.02.092
  24. H.C. Park, Y.B. Lee, S.G. Lee, C.H. Lee, J.K. Kim, S.S. Park, Ceram. Int., 2005, 31(2), 293-296. https://doi.org/10.1016/j.ceramint.2004.05.019
  25. X. Lu, Guosheng Li, Jin Y. Kim, John P. Lemmon, Vincent L. Sprenkle, ZhenguoYang, J. Power Sources., 2012, 215, 288-295. https://doi.org/10.1016/j.jpowsour.2012.05.020
  26. S. M. Kim, S. M. Lee, K. Y. Jung, Y. C. Park, N. U. Cho, J. H. Choi, and H. S. Kim, Bull. Korean Chem. Soc., 2015, 36(12), 2869-2874. https://doi.org/10.1002/bkcs.10584
  27. S. T. Lee, D. H. Lee, S. M. Lee, S. S. Han, S. H. Lee, S. K. Lim, Bull. Mater. Sci., 2016, 39(3), 729-735 https://doi.org/10.1007/s12034-016-1199-6
  28. D. H. Lee, J. S. Kim, Y. H. Kim, S. K. Lim, Materials Science/Medziagotyra, 2021, 27(1), 68-76.
  29. S. T. Lee, D. H. Lee, S. K. Lim, Materials Science., 2019, 25(3), 328-334. https://doi.org/10.5755/j01.ms.25.3.14246
  30. D. H. Lee, S. S. Han, Y. H. Kim, S. K. Lim, J Ind Eng Chem., 2019, 76, 366-373. https://doi.org/10.1016/j.jiec.2019.04.002
  31. S. T. Lee, D. H. Lee, J. S. Kim, and S. K. Lim, Met. Mater. Int., 2017, 23(2), 246-253. https://doi.org/10.1007/s12540-017-6120-3
  32. D. H. Lee, S. T. Lee, J. S. Kim, S. K. Lim, Mater. Res. Bull., 2017, 96, 143-148. https://doi.org/10.1016/j.materresbull.2017.05.003