DOI QR코드

DOI QR Code

Ionic-additive Crosslinked Polymeric Sulfur Composites as Cathode Materials for Lithium-Sulfur Batteries

  • Seong, Min Ji (Advanced Batteries Laboratory, Department of Chemistry, Incheon National University) ;
  • Manivannan, Shanmugam (Electrochemistry Laboratory for Sensors & Energy, Department of Chemistry, Incheon National University) ;
  • Kim, Kyuwon (Electrochemistry Laboratory for Sensors & Energy, Department of Chemistry, Incheon National University) ;
  • Yim, Taeeun (Advanced Batteries Laboratory, Department of Chemistry, Incheon National University)
  • 투고 : 2021.04.26
  • 심사 : 2021.05.13
  • 발행 : 2021.11.28

초록

Lithium-sulfur (Li-S) batteries are one of attractive energy conversion and storage system based on high theoretical specific capacity and energy density with low costs. However, volatile nature of elemental sulfur is one of critical problem for their practical acceptance in industry because it considerably affects electrode uniformity during electrode manufacturing. In this work, polymeric sulfur composite consisting of ionic liquid (IL) are suggested to reduce volatility nature of elemental sulfur, resulting in better processibility of the Li-S cell. According to systematic spectroscopic analysis, it is found that polymeric sulfur is consisting of repeating units combining with elemental sulfur and volatility of them is negligible even at high temperature. In addition, the IL-embedded polymeric sulfur shows moderate cycle performance compared to the cell with elemental sulfur. From these results, it is found that the IL-embedded polymeric sulfur composite is applicable cathode candidate for the Li-S cell based on their excellent non-volatility as well as their superior electrochemical performance.

키워드

과제정보

This work was supported by the Research Assistance Program (2018) in the Incheon National University.

참고문헌

  1. H. S. Kim, T. -G. Jeong, Y. -T. Kim, J. Electrochem. Sci. Technol 2016, 7(3), 228-233. https://doi.org/10.5229/JECST.2016.7.3.228
  2. X. Zhao, G. Cheruvally, C. Kim, K. -K. Cho, H. -J. Ahn, K. -W. Kim, J. -H. Ahn, J. Electrochem. Sci. Technol 2016, 7(2), 97-114. https://doi.org/10.5229/JECST.2016.7.2.97
  3. P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J. -M. Tarascon, Nat. Mater. 2012, 11(1), 19-29. https://doi.org/10.1038/nmat3191
  4. A. Manthiram, Y. Fu, Y. -S. Su, Acc. Chem. Res. 2013, 46, 1125-1134. https://doi.org/10.1021/ar300179v
  5. M. Zhang, W. Chen, L. Xue, Y. Jiao, T. Lei, J. Chu, J. Huang, C. Gong, C. Yan, Y. Yan, Y. Hu, X. Wang, J. Xiong, Adv. Energy Mater. 2020, 10(2), 1903008. https://doi.org/10.1002/aenm.201903008
  6. H. Wang, Y. Yang, Y. Liang, J. T. Robinson, Y. Li, A. Jackson, Y. Cui, H. Dai, Nano Lett. 2011, 11(7), 2644-2647. https://doi.org/10.1021/nl200658a
  7. N. Jayaprakash, J. Shen, S. S. Moganty, A. Corona, L. A. Archer, Angew. Chem. Int. Ed. 2011, 123, 6026-6030. https://doi.org/10.1002/ange.201100637
  8. M. S. Park, J. S. Yu, K. J. Kim, G. Jeong, J. H. Kim, T. Yim, Y. N. Jo, U. Hwang, S. Kang, T. Woo, H. Kim, Y. J. Kim, RSC Adv. 2013, 3(29), 11774-11781. https://doi.org/10.1039/c3ra41061g
  9. Y. Zhou, H. Shu, Y. Zhou, T. Sun, M. Han, Y. Chen, M. Chen, Z. Chen, X. Yang, X. Wang, J. Power Sources 2020, 453, 227896. https://doi.org/10.1016/j.jpowsour.2020.227896
  10. B. Long, J. Ma, T. Song, L. Liu, X. Wang, S. Song, Y. Tong, Chemical Engineering Journal 2021, 414, 128799. https://doi.org/10.1016/j.cej.2021.128799
  11. T. Yim, M. S. Park, J. S. Yu, K. J. Kim, K. Y. Im, J. H. Kim, G. Jeong, Y. N. Jo, S. G. Woo, K. S. Kang, I. Lee, Y. J. Kim, Electrochim. Acta 2013, 107, 454-460. https://doi.org/10.1016/j.electacta.2013.06.039
  12. S. S. Zhang, J. Power Sources 2013, 231, 153-162. https://doi.org/10.1016/j.jpowsour.2012.12.102
  13. S. S. Zhang, Electrochim. Acta 2012, 70, 344-348. https://doi.org/10.1016/j.electacta.2012.03.081
  14. L. L. Kong, L. Wang, Z. C. Ni, S. Liu, G. R. Li, X. P. Gao, Adv. Funct. Mater. 2019, 29(13), 1808756. https://doi.org/10.1002/adfm.201808756
  15. M. Rana, S. A. Ahad, M. Li, B. Luo, L. Wang, I. Gentle, R. Knibbe, Energy Storage Mater. 2019, 18, 289-310. https://doi.org/10.1016/j.ensm.2018.12.024
  16. S. Oae, Organic chemistry of sulfur, Plenum Press, New York, 1977.
  17. T. B. Nguyen, Adv. Synth. Catal. 2017, 359(7), 1066-1130. https://doi.org/10.1002/adsc.201601329
  18. R. Carter, L. Oakes, N. Muralidharan, C. L. Pint, J. Phys. Chem. C 2017, 121(14), 7718-7727. https://doi.org/10.1021/acs.jpcc.7b01117
  19. W. J. Chung, A. G. Simminds, J. J. Griebel, E. T. Kim, H. S. Suh, I.B. Shim, R. S. Glass, D. A. Loy, P. Theato, Y. E. Sung, K. Char, J. Pyun, Angew. Chem. Int. Ed. 2011, 123(48), 11611-11614. https://doi.org/10.1002/ange.201104237
  20. T. Li, X. Bai, U. Gulzar, Y. J. Bai, C. Capiglia, W. Deng, X. Zhou, Z. Liu, Z. Feng, R. P. Zaccaria, Adv. Funct. Mater. 2019, 29(32), 1901730. https://doi.org/10.1002/adfm.201901730
  21. W. J. Chung, J. J. Grieble, E. T. Kim, H. Yoon, A. G. Simmonds, H. J. Ji, P. T. Dirlam, R. S. Glass, J. J. Wie, N. A. Nguyen, B. W. Guralnick, J. Park, A. Somogyi, P. Theato, M. E. Mackay, Y. E. Sung, K. Char, J. Pyun, Nat. Chem. 2013, 5(6), 518-524. https://doi.org/10.1038/nchem.1624
  22. R. Fang, J. Xu, D. W. Wang, Energy Environ. Sci. 2020, 13(2), 432-471. https://doi.org/10.1039/c9ee03408k
  23. A. D. Smith, C. D. McMillen, R. C. Smith, A. G. Tennyson, J. Polym. Sci. 2020, 58(3), 438-445. https://doi.org/10.1002/pol.20190138
  24. T. Yim, H. Y. Lee, H. J. Kim, J. Mun, S. Kim, S. M. Oh, Y. G. Kim, Bull Korean Chem Soc 2007, 28(9), 1567-1572. https://doi.org/10.5012/bkcs.2007.28.9.1567
  25. T. Yim, C. Y. Choi, J. Mun, S. M. Oh, Y. G. Kim, Molecules 2009, 14, 1840-1851. https://doi.org/10.3390/molecules14051840
  26. H. Sun, G. Zhu, X. Xu, M. Liao, Y. -Y. Li, M. Angell, M. Gu, Y. Zhu, W. H. Hung, J. Li, Y. Kuang, Y. Meng, M. -C. Lin, H. Peng, H. Dai, Nat. Commun. 2019, 10(1), 1-11. https://doi.org/10.1038/s41467-018-07882-8
  27. P. Ray, M. Pilania, Mater. Today 2021 in press.
  28. J. M. Hornback, Organic chemistry, ThomsonBrooks/cole, United States of America, 2006.
  29. B. Meyer, Chem. Rev. 1976, 76(3), 367-388. https://doi.org/10.1021/cr60301a003
  30. B. Eckert, A. J. H. Jassen, A. de Keizer, W. E. Kleinjan, I Krossing, R. Steudel, Y. Steudel, M. W. Wong, Elemental sulfur and sulfur-rich compound, Springer, Germany, 2003.
  31. L. Bateman, C. G. Moore, M. Porter, J. Chem. Soc. 1958, 581, 2866-2879.
  32. P. Szajerski, J. Celinska, A. Gasiorowski, R. Anyszka, R. Walendziak, M. Lewandowski, J. Clean. Prod. 2020, 271, 122563. https://doi.org/10.1016/j.jclepro.2020.122563
  33. M. B. Smith, Organic Synthesis, McGraw-Hill, United States of America, 2002.
  34. M. A. B. H. Susan, T. Kaneko, A. Noda, M. Watanabe, J. Am. Chem. Soc. 2005, 127(13), 4976-4983. https://doi.org/10.1021/ja045155b
  35. E. Pretsch, P. Buhlmann, C. Affolter, Structure determination of organic compounds, Springer, Germany, 2000.