• Title/Summary/Keyword: Polymeric Sulfur

Search Result 17, Processing Time 0.026 seconds

Ionic-additive Crosslinked Polymeric Sulfur Composites as Cathode Materials for Lithium-Sulfur Batteries

  • Seong, Min Ji;Manivannan, Shanmugam;Kim, Kyuwon;Yim, Taeeun
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.453-457
    • /
    • 2021
  • Lithium-sulfur (Li-S) batteries are one of attractive energy conversion and storage system based on high theoretical specific capacity and energy density with low costs. However, volatile nature of elemental sulfur is one of critical problem for their practical acceptance in industry because it considerably affects electrode uniformity during electrode manufacturing. In this work, polymeric sulfur composite consisting of ionic liquid (IL) are suggested to reduce volatility nature of elemental sulfur, resulting in better processibility of the Li-S cell. According to systematic spectroscopic analysis, it is found that polymeric sulfur is consisting of repeating units combining with elemental sulfur and volatility of them is negligible even at high temperature. In addition, the IL-embedded polymeric sulfur shows moderate cycle performance compared to the cell with elemental sulfur. From these results, it is found that the IL-embedded polymeric sulfur composite is applicable cathode candidate for the Li-S cell based on their excellent non-volatility as well as their superior electrochemical performance.

Assessment of Characteristics of Biofilm Formed on Autotrophic Denitrification

  • JANG AM;BUM MINSU;KIM SUNGYOUN;AHN YEONGHEE;KIM IN S;BISHOP PAUL L
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.455-460
    • /
    • 2005
  • A pilot-scale sulfur particle autotrophic denitrification (SPAD) process for the treatment of municipal wastewater was operated for 10 months at Shihwa, Korea, and higher than $90\%\;NO^{-}_{3}-N$ removal efficiency was observed. Plate counting showed that the lower part of the denitrifying column reactor had the most autotrophic denitrifiers. The biofilm thickness formed on sulfur particles from the SPAD reactor was approximately $25-30\;{\mu}m$, measured by DAPI (4,6-diamidino-2-phenylindole) staining. The presence of bacteria inside the highly porous sulfur particle was also monitored by SEM observation of the internal surfaces of broken sulfur particles. Biofilm extracellular polymeric substances (EPS) analysis showed that the ratio of carbohydrate to protein decreased with the reactor heights at which biofilm-formed sulfur particles were obtained.

Studies on the Conversion of Hexatomic Sulfur to Octatomic Sulfur in the Manufacture of the Precipitated Sulfur (II) (침강 유황 제조에 있어서의 Hexatomic Sulfur의 Octatomic Sulfur로의 변환에 관한 연구(II))

  • 라운룡;강화수
    • YAKHAK HOEJI
    • /
    • v.27 no.3
    • /
    • pp.229-234
    • /
    • 1983
  • In the manufacture of precipitated sulfur calcium pentasulfide ($CaS_{5}$, train product) and calcium thiosulfate ($CaS_{2}O_{3}$, by-product) are decomposed simultaneously by hydrochloricacid into coarse (not being uniform) particle-size products. To improve this drawback, calcium thiosulfate was prepared directly without making calcium pentasulfide and obtained $S_{6}$ by the acid-decomposition. In the conversion of hexatomic sulfur to octatomic sulfur, the polymerization and the depolymerization were observed by using purification method. The conversion of $S_{6}$ to $S_{8}$ is proceeded by two steps. The first step reaction is affected by impurities (especially $SO_{2}$ and $H_{2}S$), Hexatomic sulfur is inert to triethylamine for the time being by purification, and thereafter a slow conversion to polymeric and then to octatomic sulfur occurs. Instead of calcium pentasulfide, the acid decomposition of calcium thiosulfate has several advantages; uniformity of particle-size of product, increase of yield, and simplicity of procedure.

  • PDF

REACTIVITY AND DURABILITY OF V2O5 CATALYSTS SUPPORTED ON SULFATED TIO2 FOR SELECTIVE REDUCTION OF NO BY NH3

  • Choo, Soo-Tae;Nam, Chang-Mo
    • Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.31-37
    • /
    • 2005
  • The selective catalytic experiments using both sulfated/sulfur-free titania and V2O5/TiO2 catalysts have been conducted for NO reduction by NH3 in a packed-bed, down-flow reactor. The sulfated and vanadia loaded titania exhibited higher activity for NO removal than the sulfur-free catalysts, where > 90% NO removal was achieved over the sulfated V2O5/TiO2 catalyst between 280∼500 C. The surface structure of vanadia species on the catalyst surface played a critical role in the high performance of catalysts in which the existence of monomeric/polymeric vanadate is revealed by Raman spectra studies. Water vapor and SO2 were added to the reacting system for the catalyst deactivation tests. At higher temperatures (T ≥ 350 C), little deactivation was observed over the sulfated V2O5/TiO2 catalysts, showing good durability against SO2 and water vapor, which is compared with deactivation at lower temperatures.

Crystal Structure and Molecular Stereochemistry of Novel Polymeric Cu2(DMP)44(DMSO) as a Platform for Phosphate Diester Binding

  • Rafizadeh, Massoud;Tayebee, Reza;Amani, Vahid;Nasseh, Mohammad
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.594-598
    • /
    • 2005
  • Treatment of a solution of $CuCl_2$ in dimethyl phosphate (DMP) with DMSO under nitrogen atmosphere afforded to a light blue fluorescence powder. Slow evaporation of $H_2O$-DMSO solution of this powder resulted in blue-sky crystals of a new polymeric Cu(II) complex, with a unit cell composed of $Cu_2(DMP)_4$(DMSO), (1). The crystal and molecular structure of the complex acquired crystallographically. Compound (1) crystallizes in the monoclinic space group $P2_1$/n with a = 12.8920(11) $\AA$, b = 13.1966(11) $\AA$, c = 14.7926(13) $\AA$, $\alpha$ = 90$^{\circ}$, $\beta$ = 98.943(2)$^{\circ}$, $\gamma$ = 90$^{\circ}$, V= 2486.1(4) ${\AA}^3$, and Z = 4. A square pyramidal environment for the metal center was established by coordination of oxygen atoms of four bridging DMP ligands in the basal positions and binding a tri-centered oxygen atom of DMSO in the apical disposition of Cu(II). The sixth position was also affected by a weak interaction with the sulfur atom of another DMSO. The phosphorous atom in the bridging DMP was arranged in a deformed tetrahedron with (gg) conformation for methyl esters with $C_{2v}$ symmetry.

Studies on the Polymeric Surfactants (III);Synthesis of Sodium ${\alpha}-Sulfo$ Fatty Acid Allyl Ester Oligomers (고분자(高分子) 계면활성제(界面活性劑)에 관한 연구(硏究) (제(第) 3 보(報));알릴에스테르 ${\alpha}$-술폰 지방산(脂肪酸) 고분자(高分子) 화합물(化合物)의 합성(合成))

  • Nam, Ki-Dae;Jeong, No-Hee;No, Sueng-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.45-51
    • /
    • 1989
  • Allyl aliphatic carboxylates were synthesized by azotropic reaction with benzene between allyl alcohol and capric acid, lauric acid, myristic acid, palmitic acid or stearic acid respectively. allyl aliphatic carboxylates oligomers were prepared from polymerization giving allyl aliphatic carvboxylates in the presence of potassium persulfate in methanol, and the ${\alpha}-sulfonation$ of these five allyl aliphatic carboxylates oligomers were carried by direct addition of dry sulfur trioxide. Especially, molecular weights of fatty acid alylester oligomers and their sodium salts of ${\alpha}-sulfo$ fatty acid allylester oligomers were measured by boiling point method.

Studies on the Polymeric Surface Active Agent (I);Synthesis of Sodium ${\alpha}-Sulfo$ Fatty Acid Vinyl Ester Oligomers (고분자(高分子) 계면활성제(界面活性劑)에 관(關)한 연구(硏究)(제(第) 1 보(報));나트륨 알파 술폰 지방산(脂肪酸) 비닐에스테르 올리머고류(類)의 합성(合成))

  • Jeong, No-Hee;No, Sueng-Ho;Nam, Ki-Dae;So, Boo-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.21-26
    • /
    • 1989
  • Four fatty acid vinyl esters were synthesized by transesterification between vinyl acetate and lauric acid, myristic acid, palmitic acid, stearic acid, respectively. Fatty acid vinyl ester oligomers were prepared from polymerization of four fatty acid vinyl esters in the presence of potassium persulfate in methanol. The ${\alpha}-sulfonation$ of these four fatty acid vinyl ester oligomer were carried by direct addition of sulfur trioxide. Especially, molecular weights of sodium ${\alpha}-sulfo$ fatty acid vinyl ester oligomers were measured by boiling point method.

A Study on the Sulfur-Resistant Catalysts for Water Gas Shift Reaction I. TPR Studies of $Mo/\gamma -Al_2O_3$ Catalysts

  • 박진남;김준희;이호인
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.12
    • /
    • pp.1363-1368
    • /
    • 1998
  • Mo/γ-Al2O3 catalysts were prepared by impregnation method in various conditions to identify the states of surface Mo species. TPR (Temperature-Programmed Reduction) and Raman spectroscopy were applied to analyze the surface Mo species. TPR analysis revealed that MoO3 was reduced to Mo through MoO2, the intermediate state and the increase of Mo loading enhanced the reducibility of Mo oxide till the formation of monolayer coverage. High temperature calcination induced oxygen defects in MoO3 giving their unstable states for easier reduction. Raman spectroscopy analysis showed that the increase of Mo loading induced the polymeric Mo oxide.

Non-isothermal TGA Analysis on Thermal Degradation Kinetics of Modified-NR Rubber Composites (비등온 TGA에 의한 개질NR고무복합재료지 열분해 Kinetics에 관한 해석)

  • Oh, Jeong-Seok;Lee, Joon-Mann;Ahn, Won-Sool
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.435-440
    • /
    • 2009
  • Thermal degradation behavior of CR (chloroprene) -modified NR (natural rubber) compounds, having different sulfur/accelerator compositions, was studied by non-isothermal TGA method. Data were analyzed using both Kissinger and Flynn-Wall-Ozawa analysis to assess the activation energies. Activation energy obtained from Kissinger analysis was $147.0{\pm}2.0$ kJ/mol for all samples, showing little effect of sulfur/accelerator composition changes in the samples. On the other hand, activation energy from Flynn-Wall-Ozawa analysis exhibited much variations with conversion, showing average value of $211.6{\pm}19.0$ kJ/mol. From the results, it was considered that whole thermal degradation processes of the samples were composed of complex multiple step processes, of which reaction mechanisms were different from each other.

A Study on Effects of Vulcanization Systems on Cross-linking and Degradation Reactions of NR/CR Blends Using Dynamic DSC and TGA (Dynamic DSC와 TGA를 이용한 NR/CR 고무블렌드의 가황시스템이 가교 및 열화반응에 미치는 영향 연구)

  • Min, Byung-kwon;Park, DongRyul;Ahn, WonSool
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.169-173
    • /
    • 2009
  • Effects of variations sulfur/accelerator ratio on cross-linking and thermal degradation behavior of NR/CR rubber compounds were studied using both dynamic DSC and non-isothermal TGA. DSC thermograms of the given samples were obtained with several different heating rates, and after cross-liked in DSC, TGA thermograms with the same samples also obtained. Kissinger analysis was applied to assess the activation energies for the cross-linking and thermal decomposition processes. Results showed that the formation and thermal decomposition reaction of the samples occurred in the overall temperature range of $120{\sim}180^{\circ}C$ and $350{\sim}450^{\circ}C$, respectively, exhibiting that data could be well-fittable by Kissinger method. Furthermore, formation activation energy by DSC was estimated as $83.0{\pm}5.0kJ/mol$, which was much smaller than that of degradation by TGA, $147.0{\pm}2.0kJ/mol$. From these results, it was considered that, although variations of sulfur/accelerator ratio in the present experiments affected little on the formation mechanism and/or thermal degradation, they could play roles as the catalysts which lower the activation energy of formation. Because of stabilization after formation reaction, however, they have no more effects on the lowering the activation energy, showing higher values when decomposition, caused by main-chain scissions.