Acknowledgement
This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2018S1A5A8027802). We thank Dr. Jeong Rim Ko for performing cisplatin-administered animal models.
References
- Frezza M, Hindo S, Chen D et al (2010) Novel metals and metal complexes as platforms for cancer therapy. Curr Pharm Des 16, 1813-1825 https://doi.org/10.2174/138161210791209009
- Kelland L (2007) The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 7, 573-584 https://doi.org/10.1038/nrc2167
- Jung ET, Koh DS, Lim YH, Shin SY and Lee YH (2020) Overcoming multidrug resistance by activating unfolded protein response of the endoplasmic reticulum in cisplatin-resistant A2780/CisR ovarian cancer cells. BMB Rep 53, 88-93 https://doi.org/10.5483/bmbrep.2020.53.2.108
- Sakai H, Sagara A, Arakawa K et al (2014) Mechanisms of cisplatin-induced muscle atrophy. Toxicol Appl Pharmacol 278, 190-199 https://doi.org/10.1016/j.taap.2014.05.001
- Jin YJ, Huynh DTN, Kang KW, Myung CS and Heo KS (2019) Inhibition of p90RSK activation sensitizes triple-negative breast cancer cells to cisplatin by inhibiting proliferation, migration and EMT. BMB Rep 52, 706-711 https://doi.org/10.5483/BMBRep.2019.52.12.234
- Conte E, Bresciani E, Rizzi L et al (2020) Cisplatin-induced skeletal muscle dysfunction: mechanisms and counteracting therapeutic strategies. Int J Mol Sci 21, 1242 https://doi.org/10.3390/ijms21041242
- Fearon K, Strasser F, Anker SD et al (2011) Definition and classification of cancer cachexia: an international consensus. Lancet Oncol 12, 489-495 https://doi.org/10.1016/S1470-2045(10)70218-7
- Conte E, Camerino GM, Mele A et al (2017) Growth hormone secretagogues prevent dysregulation of skeletal muscle calcium homeostasis in a rat model of cisplatin-induced cachexia. J Cachexia Sarcopenia Muscle 8, 386-404 https://doi.org/10.1002/jcsm.12185
- Bresciani E, Rizzi L, Molteni L et al (2017) JMV2894, a novel growth hormone secretagogue, accelerates body mass recovery in an experimental model of cachexia. Endocrine 58, 106-114 https://doi.org/10.1007/s12020-016-1184-2
- Sakai H, Sagara A, Arakawa K et al (2014) Mechanisms of cisplatin-induced muscle atrophy. Toxicol Appl Pharmacol 278, 190-199 https://doi.org/10.1016/j.taap.2014.05.001
- Dickey DT, Muldoon LL, Doolittle ND, Peterson DR, Kraemer DF and Neuwelt EA (2008) Effect of N-acetylcysteine route of administration on chemoprotection against cisplatin-induced toxicity in rat models. Cancer Chemother Pharmacol 62, 235-241 https://doi.org/10.1007/s00280-007-0597-2
- Garcia JM, Cata JP, Dougherty PM and Smith RG (2008) Ghrelin prevents cisplatin-induced mechanical hyperalgesia and cachexia. Endocrinology 149, 455-460 https://doi.org/10.1210/en.2007-0828
- Park SE, Choi JH, Park JY et al (2020) Loss of skeletal muscle mass during palliative chemotherapy is a poor prognostic factor in patients with advanced gastric cancer. Sci Rep 10, 17683 https://doi.org/10.1038/s41598-020-74765-8
- Lin JF, Lin YC, Tsai TF, Chen HE, Chou KY and Hwang TIS (2017) Cisplatin induces protective autophagy through activation of BECN1 in human bladder cancer cells. Drug Des Devel Ther 11, 1517-1533 https://doi.org/10.2147/DDDT.S126464
- Cocetta V, Ragazzi E and Montopoli M (2019) Mitochondrial involvement in cisplatin resistance. Int J Mol Sci 20, 3384 https://doi.org/10.3390/ijms20143384
- Lomeli N, Di K, Czerniawski J, Guzowski JF and Bota DA (2017) Cisplatin-induced mitochondrial dysfunction is associated with impaired cognitive function in rats. Free Radic Biol Med 102, 274-286 https://doi.org/10.1016/j.freeradbiomed.2016.11.046
- Inapurapu SP, Kudle KR, Bodiga S and Bodiga VL (2017) Cisplatin cytotoxicity is dependent on mitochondrial respiration in Saccharomyces cerevisiae. Iran J Basic Med Sci 20, 83-89
- Sartori R, Romanello V, Sandri M (2021) Mechanisms of muscle atrophy and hypertrophy: implications in health and disease. Nat Commun 12, 330 https://doi.org/10.1038/s41467-020-20123-1
- Romanello V and Sandri M (2015) Mitochondrial quality control and muscle mass maintenance. Front Physiol 6, 422 https://doi.org/10.3389/fphys.2015.00422
- Sirago G, Conte E, Fracasso F et al (2017) Growth hormone secretagogues hexarelin and JMV2894 protect skeletal muscle from mitochondrial damages in a rat model of cisplatin-induced cachexia. Sci Rep 7, 1-14 https://doi.org/10.1038/s41598-016-0028-x
- Hood DA, Memme JM, Oliveira AN and Triolo M (2019) Maintenance of skeletal muscle mitochondria in health, exercise, and aging. Annu Rev Physiol 81, 19-41 https://doi.org/10.1146/annurev-physiol-020518-114310
- Poillet Perez L, Sarry JE and Joffre C (2021) Autophagy is a major metabolic regulator involved in cancer therapy resistance. Cell Rep 36, 109528 https://doi.org/10.1016/j.celrep.2021.109528
- Paolini A, Omairi S, Mitchell R et al (2018) Attenuation of autophagy impacts on muscle fibre development, starvation induced stress and fibre regeneration following acute injury. Sci Rep 8, 9062 https://doi.org/10.1038/s41598-018-27429-7
- Gasiorkiewicz BM, Koczurkiewicz-Adamczyk P, Piska K and Pekala E (2021) Autophagy modulating agents as chemosensitizers for cisplatin therapy in cancer. Invest New Drugs 39, 538-563 https://doi.org/10.1007/s10637-020-01032-y
- Dikic I and Elazar Z (2018) Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 19, 349-364 https://doi.org/10.1038/s41580-018-0003-4
- Yu L, Chen Y and Tooze SA (2018) Autophagy pathway: Cellular and molecular mechanisms. Autophagy 14, 207-215 https://doi.org/10.1080/15548627.2017.1378838
- Metaxakis A, Ploumi C and Tavernarakis N (2018) Autophagy in age-associated neurodegeneration. Cells 7, 37 https://doi.org/10.3390/cells7050037
- Banerjee A and Guttridge DC (2012) Mechanisms for maintaining muscle. Curr Opin Support Palliat Care 6, 451-456 https://doi.org/10.1097/SPC.0b013e328359b681
- Youle RJ and Van Der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337, 1062-1065 https://doi.org/10.1126/science.1219855
- Kleih M, Bopple K, Dong M et al (2019) Direct impact of cisplatin on mitochondria induces ROS production that dictates cell fate of ovarian cancer cells. Cell Death Dis 10, 851 https://doi.org/10.1038/s41419-019-2081-4
- Gordon JA and Gattone N (1986) Mitochondrial alterations in cisplatin-induced acute renal failure. Am J Physiol 250, F991-F998
- Choi YM, Kim HK, Shim W et al (2015) Mechanism of cisplatin-induced cytotoxicity is correlated to impaired metabolism due to mitochondrial ROS generation. PLoS One 10, e0135083 https://doi.org/10.1371/journal.pone.0135083
- Kruspig B, Valter K, Skender B, Zhivotovsky B and Gogvadze V (2016) Targeting succinate: ubiquinone reductase potentiates the efficacy of anticancer therapy. Biochim Biophys Acta 1863, 2065-2071 https://doi.org/10.1016/j.bbamcr.2016.04.026
- Chen J, Zhang L, Zhou H et al (2018) Inhibition of autophagy promotes cisplatin-induced apoptotic cell death through Atg5 and Beclin 1 in A549 human lung cancer cells. Mol Med Rep 17, 6859-6865
- Fanzani A, Zanola A, Rovetta F, Rossi S and Aleo MF (2011) Cisplatin triggers atrophy of skeletal C2C12 myotubes via impairment of Akt signalling pathway and sub-sequent increment activity of proteasome and autophagy systems. Toxicol Appl Pharmacol 250, 312-321 https://doi.org/10.1016/j.taap.2010.11.003
- Sandri M (2010) Autophagy in skeletal muscle. FEBS Lett 584, 1411-1416 https://doi.org/10.1016/j.febslet.2010.01.056
- Sandri M, Sandri C, Gilbert A et al (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117, 399-412 https://doi.org/10.1016/S0092-8674(04)00400-3
- Rambold AS and Lippincott-Schwartz J (2011) Mechanisms of mitochondria and autophagy crosstalk. Cell Cycle 10, 4032-4038 https://doi.org/10.4161/cc.10.23.18384
- Zhu L, Yuan Y, Yuan L et al (2020) Activation of TFEB-mediated autophagy by trehalose attenuates mitochondrial dysfunction in cisplatin-induced acute kidney injury. Theranostics 10, 5829-5844 https://doi.org/10.7150/thno.44051
- Wang J and Wu GS (2014) Role of autophagy in cisplatin resistance in ovarian cancer cells. J Biol Chem 289, 17163-17173 https://doi.org/10.1074/jbc.M114.558288