DOI QR코드

DOI QR Code

전자빔 표면 조사에 따른 SnO2/Ag/SnO2 박막의 특성 연구

The Effect of electron beam surface irradiation on the properties of SnO2/Ag/SnO2 thin films

  • 장진규 (울산대학교 첨단소재공학부) ;
  • 김현진 (울산대학교 첨단소재공학부) ;
  • 최재욱 (울산대학교 첨단소재공학부) ;
  • 이연학 (울산대학교 첨단소재공학부) ;
  • 공영민 (울산대학교 첨단소재공학부) ;
  • 허성보 (한국생산기술연구원 동남본부 첨단하이브리드생산기술센터) ;
  • 김유성 (한국생산기술연구원 울산본부 첨단정형공정그룹) ;
  • 김대일 (울산대학교 첨단소재공학부)
  • Jang, Jin-Kyu (School of Materials Science and Engineering, University of Ulsan) ;
  • Kim, Hyun-Jin (School of Materials Science and Engineering, University of Ulsan) ;
  • Choi, Jae-Wook (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, Yeon-Hak (School of Materials Science and Engineering, University of Ulsan) ;
  • Kong, Young-Min (School of Materials Science and Engineering, University of Ulsan) ;
  • Heo, Sung-Bo (Korea Institute of Industrial Technology) ;
  • Kim, Yu-Sung (Korea Institute of Industrial Technology) ;
  • Kim, Daeil (School of Materials Science and Engineering, University of Ulsan)
  • 투고 : 2021.10.08
  • 심사 : 2021.12.09
  • 발행 : 2021.12.31

초록

SnO2 30/Ag 15/SnO2 30 nm(SAS) tri-layer films were deposited on the glass substrates with RF and DC magnetron sputtering and then electron beam is irradiated on the surface to investigate the effect of electron bombardment on the opto-electrical performance of the films. electron beam irradiated tri-layer films at 1000 eV show a higher figure of merit of 2.72×10-3 Ω-1 than the as deposited films due to a high visible light transmittance of 72.1% and a low sheet resistance of 14.0 Ω/☐, respectively. From the observed results, it is concluded that the post-deposition electron irradiated SnO2 30/Ag 15/SnO2 30 nm tri-layer films can be used as a substitute for conventional transparent conducting oxide films in various opto-electrical applications.

키워드

과제정보

본 논문은 한국생산기술연구원 기관주요사업 "중소기업 맞춤형 생산기술지원사업(Kitech EM-210021)"의 지원으로 수행한 연구임.

참고문헌

  1. A. Mehmood, A. Alihaidry, X. Long, X. Zhang, Appl. Surf. Sci. 536 (2021) 147873. https://doi.org/10.1016/j.apsusc.2020.147873
  2. G. Bang, D. Choi, Korean J. Met. Mater., 59 (2021) 155-161. https://doi.org/10.3365/KJMM.2021.59.3.155
  3. D. Kim, J. Kor. Soc. Heat. Treat., 24 (2011) 140-143. https://doi.org/10.12656/JKSHT.2011.24.3.140
  4. T. Lai, T. Fang, C. Chan, Y. Hsiao, Vacuum 166 (2019) 155-161. https://doi.org/10.1016/j.vacuum.2019.04.061
  5. A. Abliz, D. Wan, L. Yang, M. Mamat, H. Chen, Mater. Sci. Semicon. Process, 95 (2019) 54-58. https://doi.org/10.1016/j.mssp.2019.01.027
  6. V. N. Zhitomirsky, T. David, R. L. Boxman, S. Goldsmith, A. Verdyan, Y. M. Soifer, L. Rapoport, Thin Solid Films 492 (2005) 187-194. https://doi.org/10.1016/j.tsf.2005.06.061
  7. Y. Park, S. Choe, Y. Kim, B. Cha, Y. Gong, D. Kim, J. Korean Inst. Surf. Eng. 53 (2020) 104-108. https://doi.org/10.5695/JKISE.2020.53.3.104
  8. Y. S. Kim, Appl. Surf. Sci. 254 (2007) 1524-1527. https://doi.org/10.1016/j.apsusc.2007.07.080
  9. J. Jang, H. Kim, D. Kim, J. Korean Inst. Surf. Eng., 54 (2021) 119-123. https://doi.org/10.5695/JKISE.2021.54.3.119
  10. T. K. Gong, S. B. Heo, D. Kim, Ceram. Inter., 42 (2016) 12341. https://doi.org/10.1016/j.ceramint.2016.05.006
  11. S. B. Heo, J. Y. Chun, Y. J. Lee. H..M. Lee, D. Kim, J. Kor. Soc. Heat. Treat., 25 (2012) 134-137. https://doi.org/10.12656/JKSHT.2012.25.3.134
  12. G. Haacke, J. Appl. Phys., 47 (1976) 4086. https://doi.org/10.1063/1.323240
  13. T. Oh, Journal of the Semiconductor & Display Technology, 15 (2016) 70-75.