DOI QR코드

DOI QR Code

Fast Adaptation Techniques of Compensation Coefficient of Active Noise Canceller using Binary Search Algorithm

이진 탐색 알고리즘을 이용한 능동 노이즈 제거용 보정 계수 고속 적용 기법

  • Received : 2021.09.10
  • Accepted : 2021.09.24
  • Published : 2021.11.30

Abstract

Portable systems with built-in active noise control is required low power operation. Excessive anti noise search operation can lead to rapid battery consumption. A method that can adaptively cancel noise according to the operating conditions of the system is required and the methods of reducing power are becoming very important key feature in today's portable systems. In this paper, we propose the method of active noise control(ANC) using binary search algorithm in noisy systems. The implemented architecture detects a frequency component considered as noise from the input signal and by using the binary search algorithm, the system find out an appropriate amplitude value for anti-noise in a much faster time than the general linear search algorithm. Through the experimental results, it was confirmed that the proposed algorithm performs a successful functional operation.

능동 노이즈 제어 시스템이 내장되어 있는 휴대용 시스템은 저전력 구동이 요구된다. 능동 노이즈 제어를 위한 과도한 안티 노이즈 탐색 동작은 내장 배터리의 빠른 전력 소모를 발생시킨다. 시스템의 동작 조건에 따라 적응적으로 노이즈를 제거 할 수 있는 방법이 요구되며, 전력 소모를 줄이는 방법은 오늘날의 휴대용 시스템에서 매우 중요한 핵심 기능이 되고 있다. 본 논문에서는 다양한 노이즈가 입력될 수 있는 시스템에서 이진 탐색 알고리즘을 이용한 고속의 능동 노이즈 제어(Active Noise Control, ANC) 방법을 제안한다. 연구를 위해 구현된 아키텍처는 입력 신호로부터 노이즈로 간주되는 주파수 성분을 감지하고, 이진 탐색 알고리즘을 이용하여 일반적인 선형 탐색 알고리즘 보다 훨씬 더 빠른 속도로 안티 노이즈 생성을 위한 적절한 진폭 값을 찾게 된다. 실험 결과를 통해 제안한 알고리즘의 동작이 성공적으로 수행함을 확인하였다.

Keywords

Acknowledgement

This study was supported by the BK21 FOUR project funded by the Ministry of Education, Korea (4199990113966, 10%), Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2019R1A2C2005099, 10%), and Ministry of Education (NRF-2018R1A6A1A03025109, 10%). This work was partly supported by Institute of Information and communications Technology Planning and Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2021-0-00944, Metamorphic approach of unstructured validation/verification for analyzing binary code, 70%).

References

  1. J. S. Kwon, M. G. Seok, and D. J. Park, "Low-Power Fast Partial Firmware Update Technique of On-Chip Flash Memory for Reliable Embedded IoT Microcontroller," IEICE Transactions on Electronics, vol. E104-C, no. 6, pp. 226-236, 2021. https://doi.org/10.1587/transele.2020LHP0001
  2. J. S. Kwon, M. G. Seok, and D. J. Park, "User Insensible Sliding Firmware Update Technique for Flash-Area/Time-Cost Reduction toward Low-Power Embedded Software Replacement," in 2020 IEEE COOLChips, 2020.
  3. A. K. Sugiyama, R. Miyahara, and K. Oosugi, "A noise robust hearable device with an adaptive noise canceller and its dsp implementation," in 2019 IEEE International Conference on Consumer Electronics (ICCE), pp. 1-2, 2019.
  4. J. S. Kwon, J. H. Cho, and D. J. Park, "Function Block-Based Robust Firmware Update Technique for Additional Flash-Area/Energy-Consumption Overhead Reduction," in 2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), pp. 1-2, 2019.
  5. A. Goel, A. Vetteth, K. R. Rao, and V. Sridhar, "Active cancellation of acoustic noise using a self-tuned filter," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 51, no. 11, pp. 2148-2156, 2004. https://doi.org/10.1109/TCSI.2004.836860
  6. S. M. Kuo, S. Mitra, and W. S. Gan, "Active noise control system for headphone applications," IEEE Transactions on Control Systems Technology, vol. 14, no. 2, pp. 331-335, 2006. https://doi.org/10.1109/TCST.2005.863667
  7. T. Z. Wang, T. Jin, Z. M. Lu, C. Zhang, G. Q. Liu, X. Zhao, and C. Li, "Research on active noise control method compensating for acoustic metamaterial noise barrier in transformer noise reduction," in 2018 IEEE 2nd International Electrical and Energy Conference (CIEEC), pp. 648-652, 2018.
  8. B. Reshma and K. A. Kiran, "Active noise cancellation for in-ear headphones implemented on fpga," in 2017 International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 602-606, 2017.
  9. D. J. Park and J. H. Cho, "Low-power universal edge tracer architecture using accuracy-controlled resource reallocation for event-driven sensing applications," Procedia Computer Science, vol. 56, no. 1, pp. 67-73, 2015. https://doi.org/10.1016/j.procs.2015.07.185